【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors

本文主要是介绍【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

英文原网页查看。

基于惯性矩和偏心距的描述符

在本教程中,我们将学习如何使用pcl::MomentOfInertiaEstimation类来获得基于偏心量和惯性矩的描述符。这个类还允许提取轴对齐和有向的点云包围框。但是请记住,提取的OBB可能并不是最小的边界框。

理论基础

特征提取方法的思想如下。首先计算点云的协方差矩阵,提取点云的特征值和特征向量。可以考虑得到的特征向量是归一化的,并且总是基于右手坐标系(主特征向量表示x轴,副特征向量表示z轴)。下一步是迭代过程。在每次迭代中旋转主特征向量。旋转顺序总是相同的,并且是围绕其他特征向量执行的,这就提供了点云旋转的不变性。从此,我们将把这个旋转的主矢量称为当前轴。
在这里插入图片描述对每一当前轴的转动惯量进行计算。此外,当前轴也用于偏心计算。因此,将当前矢量作为平面的法向量,并将输入云投影到其上。然后计算得到的投影偏心量。
在这里插入图片描述
实现的类还提供了获取AABB和OBB的方法。沿着特征向量,将有向包围盒计算为AABB。

实现代码

首先,本教程需要点云。这是截屏上显示的。接下来你需要做的是在任何你喜欢的编辑器中创建一个文件moment_of_inertia.cpp,并在其中复制以下代码:

#include <vector>
#include <thread>#include <pcl/features/moment_of_inertia_estimation.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/cloud_viewer.h>using namespace std::chrono_literals;int main (int argc, char** argv)
{if (argc != 2)return (0);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;feature_extractor.setInputCloud (cloud);feature_extractor.compute ();std::vector <float> moment_of_inertia;std::vector <float> eccentricity;pcl::PointXYZ min_point_AABB;pcl::PointXYZ max_point_AABB;pcl::PointXYZ min_point_OBB;pcl::PointXYZ max_point_OBB;pcl::PointXYZ position_OBB;Eigen::Matrix3f rotational_matrix_OBB;float major_value, middle_value, minor_value;Eigen::Vector3f major_vector, middle_vector, minor_vector;Eigen::Vector3f mass_center;feature_extractor.getMomentOfInertia (moment_of_inertia);feature_extractor.getEccentricity (eccentricity);feature_extractor.getAABB (min_point_AABB, max_point_AABB);feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);feature_extractor.getEigenValues (major_value, middle_value, minor_value);feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);feature_extractor.getMassCenter (mass_center);pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));viewer->setBackgroundColor (0, 0, 0);viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB");Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);Eigen::Quaternionf quat (rotational_matrix_OBB);viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "OBB");pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");while(!viewer->wasStopped()){viewer->spinOnce (100);std::this_thread::sleep_for(100ms);}return (0);
}

解释

现在让我们研究一下这段代码的目的。头几行将被省略,因为它们很明显。

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ> ());if (pcl::io::loadPCDFile (argv[1], *cloud) == -1)return (-1);

这些行只是从.pcd文件加载点云。

  pcl::MomentOfInertiaEstimation <pcl::PointXYZ> feature_extractor;feature_extractor.setInputCloud (cloud);feature_extractor.compute ();

下面是pcl:: momentofinertiaestimate类实例化的地方。之后,我们立即设置输入点云并启动计算过程,就这么简单。

  std::vector <float> moment_of_inertia;std::vector <float> eccentricity;pcl::PointXYZ min_point_AABB;pcl::PointXYZ max_point_AABB;pcl::PointXYZ min_point_OBB;pcl::PointXYZ max_point_OBB;pcl::PointXYZ position_OBB;Eigen::Matrix3f rotational_matrix_OBB;float major_value, middle_value, minor_value;Eigen::Vector3f major_vector, middle_vector, minor_vector;Eigen::Vector3f mass_center;

声明存储描述符和边界框所需的所有必要变量。

  feature_extractor.getMomentOfInertia (moment_of_inertia);feature_extractor.getEccentricity (eccentricity);feature_extractor.getAABB (min_point_AABB, max_point_AABB);feature_extractor.getOBB (min_point_OBB, max_point_OBB, position_OBB, rotational_matrix_OBB);feature_extractor.getEigenValues (major_value, middle_value, minor_value);feature_extractor.getEigenVectors (major_vector, middle_vector, minor_vector);feature_extractor.getMassCenter (mass_center);

这些行显示了如何访问计算过的描述符和其他特性。

  pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));viewer->setBackgroundColor (0, 0, 0);viewer->addCoordinateSystem (1.0);viewer->initCameraParameters ();viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");viewer->addCube (min_point_AABB.x, max_point_AABB.x, min_point_AABB.y, max_point_AABB.y, min_point_AABB.z, max_point_AABB.z, 1.0, 1.0, 0.0, "AABB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "AABB");

这些行简单地创建了用于结果可视化的PCLVisualizer类的实例。在这里,我们还添加了点云和AABB以实现可视化。我们设置了呈现属性,以便使用线框显示立方体,因为默认情况下使用的是实体立方体。

  Eigen::Vector3f position (position_OBB.x, position_OBB.y, position_OBB.z);Eigen::Quaternionf quat (rotational_matrix_OBB);viewer->addCube (position, quat, max_point_OBB.x - min_point_OBB.x, max_point_OBB.y - min_point_OBB.y, max_point_OBB.z - min_point_OBB.z, "OBB");viewer->setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION, pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME, "OBB");

OBB的可视化稍微复杂一些。这里我们从旋转矩阵中创建一个四元数,设置OBBs的位置并将其传递给可视化器。

  pcl::PointXYZ center (mass_center (0), mass_center (1), mass_center (2));pcl::PointXYZ x_axis (major_vector (0) + mass_center (0), major_vector (1) + mass_center (1), major_vector (2) + mass_center (2));pcl::PointXYZ y_axis (middle_vector (0) + mass_center (0), middle_vector (1) + mass_center (1), middle_vector (2) + mass_center (2));pcl::PointXYZ z_axis (minor_vector (0) + mass_center (0), minor_vector (1) + mass_center (1), minor_vector (2) + mass_center (2));viewer->addLine (center, x_axis, 1.0f, 0.0f, 0.0f, "major eigen vector");viewer->addLine (center, y_axis, 0.0f, 1.0f, 0.0f, "middle eigen vector");viewer->addLine (center, z_axis, 0.0f, 0.0f, 1.0f, "minor eigen vector");

这些代码负责特征向量的可视化。剩下的几行代码只是启动可视化过程。

编译和运行程序

在CMakeLists.txt文件中添加以下行:

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)project(moment_of_inertia)find_package(PCL 1.8 REQUIRED)include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})add_executable (moment_of_inertia moment_of_inertia.cpp)
target_link_libraries (moment_of_inertia ${PCL_LIBRARIES})

完成可执行文件后,就可以运行它了,只需做:

$ ./moment_of_inertia lamppost.pcd

您应该会看到类似于此图像的内容。这里AABB是黄色的,OBB是红色的。你也可以看到特征向量。
在这里插入图片描述

这篇关于【译】PCL官网教程翻译(20):惯性矩和偏心距描述符 - Moment of inertia and eccentricity based descriptors的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126982

相关文章

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

spring AMQP代码生成rabbitmq的exchange and queue教程

《springAMQP代码生成rabbitmq的exchangeandqueue教程》使用SpringAMQP代码直接创建RabbitMQexchange和queue,并确保绑定关系自动成立,简... 目录spring AMQP代码生成rabbitmq的exchange and 编程queue执行结果总结s

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本