windows C++ 并行编程-C++ AMP 图形(二)

2024-09-01 11:52

本文主要是介绍windows C++ 并行编程-C++ AMP 图形(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文中的"显存"还没有找到合适的中文翻译,它的英文名称是texture, 在应用开发者来看,texture是一个名词,在物理上指的是 GPU显存中一段连续的空间。

读取显存对象

可以使用 texture::operator[]、texture::operator() 运算符或 texture::get 方法从 texture 对象中读取。 两个运算符将返回一个值,而不是引用。 因此,你不能使用 texture 写入 texture::operator\[\] 对象。

void readTexture() {std::vector<int_2> src;for (int i = 0; i <16 *32; i++) {int_2 i2(i, i);src.push_back(i2);}std::vector<int_2> dst(16* 32);array_view<int_2, 2> arr(16, 32, dst);arr.discard_data();const texture<int_2, 2> tex9(16, 32, src.begin(), src.end());parallel_for_each(tex9.extent, [=, &tex9] (index<2> idx) restrict(amp) { // Use the subscript operator.arr[idx].x += tex9[idx].x; // Use the function () operator.arr[idx].x += tex9(idx).x; // Use the get method.arr[idx].y += tex9.get(idx).y; // Use the function () operator.arr[idx].y += tex9(idx[0], idx[1]).y;});arr.synchronize();
}

 下面的代码示例演示如何在短矢量中存储显存通道,然后访问作为短矢量属性的各个标量元素。

void UseBitsPerScalarElement() { // Create the image data. // Each unsigned int (32-bit) represents four 8-bit scalar elements(r,g,b,a values).const int image_height = 16;const int image_width = 16;std::vector<unsigned int> image(image_height* image_width);extent<2> image_extent(image_height, image_width);// By using uint_4 and 8 bits per channel, each 8-bit channel in the data source is // stored in one 32-bit component of a uint_4.texture<uint_4, 2> image_texture(image_extent, image.data(), image_extent.size()* 4U,  8U);// Use can access the RGBA values of the source data by using swizzling expressions of the uint_4.parallel_for_each(image_extent,[&image_texture](index<2> idx) restrict(amp){ // 4 bytes are automatically extracted when reading.uint_4 color = image_texture[idx];unsigned int r = color.r;unsigned int g = color.g;unsigned int b = color.b;unsigned int a = color.a;});
}

 下表列出了每种短矢量类型的每通道有效位数。

 写入显存对象

使用 texture::set 方法可写入 texture 对象。 显存对象可以是只读或读/写属性。 显存对象若要可读写,必须满足以下条件:

T 只有一个标量组件。 (不允许使用短矢量。)

T 不是 double、norm 或 unorm。

texture::bits_per_scalar_element 属性为 32。

如果不符合这三个条件,则 texture 对象为只读对象。 编译期间将检查前两个条件。 如果有代码尝试写入 readonly 显存对象,将产生编译错误。 texture::bits_per_scalar_element 条件在运行时进行检查,如果尝试写入只读的 texture 对象,则运行时将产生 unsupported_feature 异常。

下面的代码示例向一个显存对象写入了多个值。

void writeTexture() {texture<int, 1> tex1(16);parallel_for_each(tex1.extent, [&tex1] (index<1> idx) restrict(amp) {tex1.set(idx, 0);});
}
 复制显存对象

如下面的代码示例所示,可以使用 copy 函数或 copy_async 函数在显存对象之间进行复制。

void copyHostArrayToTexture() { // Copy from source array to texture object by using the copy function.float floatSource[1024* 2];for (int i = 0; i <1024* 2; i++) {floatSource[i] = (float)i;}texture<float_2, 1> floatTexture(1024);copy(floatSource, (unsigned int)sizeof(floatSource), floatTexture);// Copy from source array to texture object by using the copy function.char charSource[16* 16];for (int i = 0; i <16* 16; i++) {charSource[i] = (char)i;}texture<int, 2> charTexture(16, 16, 8U);copy(charSource, (unsigned int)sizeof(charSource), charTexture);// Copy from texture object to source array by using the copy function.copy(charTexture, charSource, (unsigned int)sizeof(charSource));
}

你还可以使用 texture::copy_to 方法从一个纹理复制到另一个纹理。 这两个纹理可以位于不同的 accelerator_view 上。 当复制到 writeonly_texture_view 对象时,数据将复制到基础 texture 对象。 源和目标 texture 对象上的每标量元素位数和范围必须相同。 如果不符合这些需求,运行时将引发异常。

显存视图类

C++ AMP 介绍了 Visual Studio 2013 中的 texture_view 类。 显存视图支持与 texture 类相同的纹素类型和秩,但是与显存不同,它们允许访问其他硬件功能,如显存采样和 mipmap。 显存视图支持对基础显存数据进行只读、只写和读/写访问。

  • 只读访问由 texture_view<const T, N> 模板专用化提供,支持具有 1 个、2 个或 4 个组件的元素、显存采样以及动态访问在实例化视图时确定的一系列 mipmap 级别;
  • 写入访问由非专用模板类 texture_view<T, N> 提供,支持具有 2 个或 4 个组件的元素,并且可以访问在实例化视图时确定的一个 mipmap 级别。 它不支持采样;
  • 读写访问由非专用模板类 texture_view<T, N> 提供,与显存一样,支持仅具有 1 个组件的元素;视图可以访问在实例化视图时确定的一个 mipmap 级别。 它不支持采样;

显存视图类似于数组视图,但是不提供 array_view 类通过 array 类提供的自动数据管理和移动功能。 texture_view 只能在基础显存数据所在的快捷键视图中进行访问。

这篇关于windows C++ 并行编程-C++ AMP 图形(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126863

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Windows的CMD窗口如何查看并杀死nginx进程

《Windows的CMD窗口如何查看并杀死nginx进程》:本文主要介绍Windows的CMD窗口如何查看并杀死nginx进程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows的CMD窗口查看并杀死nginx进程开启nginx查看nginx进程停止nginx服务

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以