Python和JAX及MATLAB小波分析导图

2024-09-01 11:36

本文主要是介绍Python和JAX及MATLAB小波分析导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 离散小波变换和逆离散小波变换
  2. 时间序列谱分析
  3. 计算比例图和频谱图显示数据
  4. 莫莱小波时频数据表征
  5. 海表温度异常的区域平均值
  6. 捕捉市场波动时间频率关联信息
  7. 信号和图像分解压缩重建
  8. 降维
  9. 分析金融波动
  10. 连续小波卷积网络和离散小波信号分类
  11. 图像处理、提取地震图速度和衰减参数
  12. 高质量无噪音时频分析
    在这里插入图片描述

Python哈尔小波

在数学中,哈尔小波是一系列重新缩放的“方形”函数,它们共同构成小波族或基。小波分析类似于傅立叶分析,因为它允许用正交基来表示间隔内的目标函数。哈尔序列现在被认为是第一个已知的小波基,并被广泛用作教学示例。哈尔小波也是最简单的小波。哈尔小波的技术缺点是它不连续,因此不可微分。然而,这一特性对于分析具有突然转变的信号(离散信号)来说却是一个优势,例如监控机器中的工具故障。

哈尔小波的母小波函数 ψ ( t ) \psi(t) ψ(t)可以描述为
ψ ( t ) = { 1 0 ≤ t < 1 2 − 1 1 2 ≤ t < 1 0 否则  \psi(t)= \begin{cases}1 & 0 \leq t<\frac{1}{2} \\ -1 & \frac{1}{2} \leq t<1 \\ 0 & \text { 否则 }\end{cases} ψ(t)= 1100t<2121t<1 否则 

其尺度函数 φ ( t ) \varphi(t) φ(t)可描述为
φ ( t ) = { 1 0 ≤ t < 1 0 否则  \varphi(t)= \begin{cases}1 & 0 \leq t<1 \\ 0 & \text { 否则 }\end{cases} φ(t)={100t<1 否则 
与哈尔小波相关的 2×2 哈尔矩阵为
H 2 = [ 1 1 1 − 1 ] H_2=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right] H2=[1111]
使用离散小波变换,可以将任意长度的偶数序列 ( a 0 , a 1 , … , a 2 n , a 2 n + 1 ) \left(a_0, a_1, \ldots, a_{2 n}, a_{2 n+1}\right) (a0,a1,,a2n,a2n+1) 变换为二元序列 -向量 ( ( a 0 , a 1 ) , ( a 2 , a 3 ) , … , ( a 2 n , a 2 n + 1 ) ) \left(\left(a_0, a_1\right),\left(a_2, a_3\right), \ldots,\left(a_{2 n}, a_{2 n+1}\right)\right) ((a0,a1),(a2,a3),,(a2n,a2n+1))。如果将每个向量与矩阵 H 2 H_2 H2 右乘,则得到结果 ( ( s 0 , d 0 ) , … , ( s n , d n ) ) \left(\left(s_0, d_0\right), \ldots,\left(s_n, d_n\right)\right) ((s0,d0),,(sn,dn)) 为快速哈尔小波变换的阶段。通常,我们将序列 s s s d d d 分开,然后继续转换序列 s s s。序列 s s s 通常被称为平均值部分,而 d d d 被称为细节部分。

如果一个序列的长度是四的倍数,则可以构建 4 个元素的块,并使用 4×4 哈尔矩阵以类似的方式对其进行变换
H 4 = [ 1 1 1 1 1 1 − 1 − 1 1 − 1 0 0 0 0 1 − 1 ] H_4=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array}\right] H4= 1110111011011101
它结合了快速哈尔小波变换的两个阶段。

一般来说,2N×2N 哈尔矩阵可以通过以下等式导出。
H 2 N = [ H N ⊗ [ 1 , 1 ] I N ⊗ [ 1 , − 1 ] ] H_{2 N}=\left[\begin{array}{c} H_N \otimes[1,1] \\ I_N \otimes[1,-1] \end{array}\right] H2N=[HN[1,1]IN[1,1]]
其中 I N = [ 1 0 … 0 0 1 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … 1 ] I_N=\left[\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right] IN= 100010001 ⊗ \otimes 是克罗内克积。

Python示例

哈尔小波的特点是简单和二元阶跃函数。其结构有利于图像和信号处理、数值分析,甚至数据压缩领域。其主要优势在于能够提供有关特定函数或数据集的局部频率信息。我们将使用 TensorFlow演示一维离散哈尔小波变换。

pip install numpy
pip install tensorflow
def haar1d_layer(x):outputs = []len = x.shape[1]while len > 1:v_reshape = tf.reshape(x, [-1, len//2, 2])v_diff = v_reshape[:,:,1:2] - v_reshape[:,:,0:1]v_diff = tf.reshape(v_diff, [-1, len//2])outputs.append(v_diff)x = tf.reduce_mean(v_reshape, axis=2)len = len // 2outputs.append(x)return tf.concat(outputs, 1)def haar1d_inv_layer(x):idx = 1len = x.shape[1]while idx < len:v_avg = x[:, -idx:]v_avg = tf.reshape(v_avg, [-1, idx, 1])v_delta = x[:, (len - (idx << 1)):(len - idx)] / 2v_delta = tf.stack([-v_delta, v_delta], axis=2) v_out = v_avg + v_deltav_out = tf.reshape(v_out, [-1, idx*2])x = tf.concat([x[:, :-(idx << 1)], v_out], axis=1)idx = idx << 1return x

haar1d_layer() 函数对输入向量中的元素对进行迭代,计算每对元素的平均值和差异,并将它们写入 output_vectorhaar1d_inv_layer() 函数执行相反的操作,从 input_vector 中获取平均值和差异对,并计算原始值,然后将它们写入 output_vector。函数 stack() 用于将 TensorArray 转换为 Tensor。

使用上述函数

v = tf.Variable([[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
],dtype=tf.float32)x = layers.Input(shape=(v.shape[1],))
y = haar1d_layer(x)
encoder = Model(x, y)
encoded = encoder.predict(v)
print(encoded)y = haar1d_inv_layer(x)
decoder = Model(x, y)
decoded = decoder.predict(encoded)
print(decoded)

运行时,您将看到转换后的向量以及转换后向量的反转结果,该结果应与原始输入向量相同。

👉更新:亚图跨际

这篇关于Python和JAX及MATLAB小波分析导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126822

相关文章

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进