Python和JAX及MATLAB小波分析导图

2024-09-01 11:36

本文主要是介绍Python和JAX及MATLAB小波分析导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 离散小波变换和逆离散小波变换
  2. 时间序列谱分析
  3. 计算比例图和频谱图显示数据
  4. 莫莱小波时频数据表征
  5. 海表温度异常的区域平均值
  6. 捕捉市场波动时间频率关联信息
  7. 信号和图像分解压缩重建
  8. 降维
  9. 分析金融波动
  10. 连续小波卷积网络和离散小波信号分类
  11. 图像处理、提取地震图速度和衰减参数
  12. 高质量无噪音时频分析
    在这里插入图片描述

Python哈尔小波

在数学中,哈尔小波是一系列重新缩放的“方形”函数,它们共同构成小波族或基。小波分析类似于傅立叶分析,因为它允许用正交基来表示间隔内的目标函数。哈尔序列现在被认为是第一个已知的小波基,并被广泛用作教学示例。哈尔小波也是最简单的小波。哈尔小波的技术缺点是它不连续,因此不可微分。然而,这一特性对于分析具有突然转变的信号(离散信号)来说却是一个优势,例如监控机器中的工具故障。

哈尔小波的母小波函数 ψ ( t ) \psi(t) ψ(t)可以描述为
ψ ( t ) = { 1 0 ≤ t < 1 2 − 1 1 2 ≤ t < 1 0 否则  \psi(t)= \begin{cases}1 & 0 \leq t<\frac{1}{2} \\ -1 & \frac{1}{2} \leq t<1 \\ 0 & \text { 否则 }\end{cases} ψ(t)= 1100t<2121t<1 否则 

其尺度函数 φ ( t ) \varphi(t) φ(t)可描述为
φ ( t ) = { 1 0 ≤ t < 1 0 否则  \varphi(t)= \begin{cases}1 & 0 \leq t<1 \\ 0 & \text { 否则 }\end{cases} φ(t)={100t<1 否则 
与哈尔小波相关的 2×2 哈尔矩阵为
H 2 = [ 1 1 1 − 1 ] H_2=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right] H2=[1111]
使用离散小波变换,可以将任意长度的偶数序列 ( a 0 , a 1 , … , a 2 n , a 2 n + 1 ) \left(a_0, a_1, \ldots, a_{2 n}, a_{2 n+1}\right) (a0,a1,,a2n,a2n+1) 变换为二元序列 -向量 ( ( a 0 , a 1 ) , ( a 2 , a 3 ) , … , ( a 2 n , a 2 n + 1 ) ) \left(\left(a_0, a_1\right),\left(a_2, a_3\right), \ldots,\left(a_{2 n}, a_{2 n+1}\right)\right) ((a0,a1),(a2,a3),,(a2n,a2n+1))。如果将每个向量与矩阵 H 2 H_2 H2 右乘,则得到结果 ( ( s 0 , d 0 ) , … , ( s n , d n ) ) \left(\left(s_0, d_0\right), \ldots,\left(s_n, d_n\right)\right) ((s0,d0),,(sn,dn)) 为快速哈尔小波变换的阶段。通常,我们将序列 s s s d d d 分开,然后继续转换序列 s s s。序列 s s s 通常被称为平均值部分,而 d d d 被称为细节部分。

如果一个序列的长度是四的倍数,则可以构建 4 个元素的块,并使用 4×4 哈尔矩阵以类似的方式对其进行变换
H 4 = [ 1 1 1 1 1 1 − 1 − 1 1 − 1 0 0 0 0 1 − 1 ] H_4=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{array}\right] H4= 1110111011011101
它结合了快速哈尔小波变换的两个阶段。

一般来说,2N×2N 哈尔矩阵可以通过以下等式导出。
H 2 N = [ H N ⊗ [ 1 , 1 ] I N ⊗ [ 1 , − 1 ] ] H_{2 N}=\left[\begin{array}{c} H_N \otimes[1,1] \\ I_N \otimes[1,-1] \end{array}\right] H2N=[HN[1,1]IN[1,1]]
其中 I N = [ 1 0 … 0 0 1 … 0 ⋮ ⋮ ⋱ ⋮ 0 0 … 1 ] I_N=\left[\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1\end{array}\right] IN= 100010001 ⊗ \otimes 是克罗内克积。

Python示例

哈尔小波的特点是简单和二元阶跃函数。其结构有利于图像和信号处理、数值分析,甚至数据压缩领域。其主要优势在于能够提供有关特定函数或数据集的局部频率信息。我们将使用 TensorFlow演示一维离散哈尔小波变换。

pip install numpy
pip install tensorflow
def haar1d_layer(x):outputs = []len = x.shape[1]while len > 1:v_reshape = tf.reshape(x, [-1, len//2, 2])v_diff = v_reshape[:,:,1:2] - v_reshape[:,:,0:1]v_diff = tf.reshape(v_diff, [-1, len//2])outputs.append(v_diff)x = tf.reduce_mean(v_reshape, axis=2)len = len // 2outputs.append(x)return tf.concat(outputs, 1)def haar1d_inv_layer(x):idx = 1len = x.shape[1]while idx < len:v_avg = x[:, -idx:]v_avg = tf.reshape(v_avg, [-1, idx, 1])v_delta = x[:, (len - (idx << 1)):(len - idx)] / 2v_delta = tf.stack([-v_delta, v_delta], axis=2) v_out = v_avg + v_deltav_out = tf.reshape(v_out, [-1, idx*2])x = tf.concat([x[:, :-(idx << 1)], v_out], axis=1)idx = idx << 1return x

haar1d_layer() 函数对输入向量中的元素对进行迭代,计算每对元素的平均值和差异,并将它们写入 output_vectorhaar1d_inv_layer() 函数执行相反的操作,从 input_vector 中获取平均值和差异对,并计算原始值,然后将它们写入 output_vector。函数 stack() 用于将 TensorArray 转换为 Tensor。

使用上述函数

v = tf.Variable([[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]
],dtype=tf.float32)x = layers.Input(shape=(v.shape[1],))
y = haar1d_layer(x)
encoder = Model(x, y)
encoded = encoder.predict(v)
print(encoded)y = haar1d_inv_layer(x)
decoder = Model(x, y)
decoded = decoder.predict(encoded)
print(decoded)

运行时,您将看到转换后的向量以及转换后向量的反转结果,该结果应与原始输入向量相同。

👉更新:亚图跨际

这篇关于Python和JAX及MATLAB小波分析导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126822

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装