深入理解红黑树:在C++中实现插入、删除和查找操作

2024-09-01 07:44

本文主要是介绍深入理解红黑树:在C++中实现插入、删除和查找操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深入理解红黑树:在C++中实现插入、删除和查找操作

红黑树是一种自平衡二叉搜索树,广泛应用于各种算法和系统中。它通过颜色属性和旋转操作来保持树的平衡,从而保证插入、删除和查找操作的时间复杂度为O(log n)。本文将详细介绍如何在C++中实现一个红黑树,并提供插入、删除和查找操作的具体实现。

红黑树的基本性质

红黑树具有以下性质:

  1. 每个节点要么是红色,要么是黑色。
  2. 根节点是黑色。
  3. 每个叶子节点(NIL节点)是黑色。
  4. 如果一个节点是红色的,则它的两个子节点都是黑色的(即没有两个连续的红色节点)。
  5. 对每个节点,从该节点到其所有后代叶子节点的路径上,包含相同数量的黑色节点。

这些性质确保了红黑树的平衡性,使得树的最长路径不会超过最短路径的两倍。

红黑树节点定义

首先,我们定义一个红黑树节点类,用于表示红黑树中的每个节点。

enum Color { RED, BLACK };template <typename T>
class Node {
public:T data;Color color;Node* left;Node* right;Node* parent;Node(T data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}
};
红黑树类定义

接下来,我们定义一个红黑树类,包含红黑树的基本结构和成员函数。

template <typename T>
class RedBlackTree {
private:Node<T>* root;void rotateLeft(Node<T>*& root, Node<T>*& pt);void rotateRight(Node<T>*& root, Node<T>*& pt);void fixInsert(Node<T>*& root, Node<T>*& pt);void fixDelete(Node<T>*& root, Node<T>*& pt);void inorderHelper(Node<T>* root);Node<T>* BSTInsert(Node<T>* root, Node<T>* pt);Node<T>* minValueNode(Node<T>* node);Node<T>* deleteBST(Node<T>* root, T data);public:RedBlackTree() : root(nullptr) {}void insert(const T& data);void deleteNode(const T& data);bool search(const T& data);void inorder();
};
插入操作

插入操作包括标准的二叉搜索树插入和红黑树的修复操作。首先,我们进行标准的BST插入,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::insert(const T& data) {Node<T>* pt = new Node<T>(data);root = BSTInsert(root, pt);fixInsert(root, pt);
}template <typename T>
Node<T>* RedBlackTree<T>::BSTInsert(Node<T>* root, Node<T>* pt) {if (root == nullptr) return pt;if (pt->data < root->data) {root->left = BSTInsert(root->left, pt);root->left->parent = root;} else if (pt->data > root->data) {root->right = BSTInsert(root->right, pt);root->right->parent = root;}return root;
}template <typename T>
void RedBlackTree<T>::fixInsert(Node<T>*& root, Node<T>*& pt) {Node<T>* parent_pt = nullptr;Node<T>* grand_parent_pt = nullptr;while ((pt != root) && (pt->color != BLACK) && (pt->parent->color == RED)) {parent_pt = pt->parent;grand_parent_pt = pt->parent->parent;if (parent_pt == grand_parent_pt->left) {Node<T>* uncle_pt = grand_parent_pt->right;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->right) {rotateLeft(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateRight(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}} else {Node<T>* uncle_pt = grand_parent_pt->left;if (uncle_pt != nullptr && uncle_pt->color == RED) {grand_parent_pt->color = RED;parent_pt->color = BLACK;uncle_pt->color = BLACK;pt = grand_parent_pt;} else {if (pt == parent_pt->left) {rotateRight(root, parent_pt);pt = parent_pt;parent_pt = pt->parent;}rotateLeft(root, grand_parent_pt);std::swap(parent_pt->color, grand_parent_pt->color);pt = parent_pt;}}}root->color = BLACK;
}
删除操作

删除操作相对复杂,需要考虑多种情况。首先,我们进行标准的BST删除,然后通过旋转和重新着色来修复红黑树的性质。

template <typename T>
void RedBlackTree<T>::deleteNode(const T& data) {Node<T>* node = deleteBST(root, data);if (node != nullptr) {fixDelete(root, node);}
}template <typename T>
Node<T>* RedBlackTree<T>::deleteBST(Node<T>* root, T data) {if (root == nullptr) return root;if (data < root->data) {return deleteBST(root->left, data);} else if (data > root->data) {return deleteBST(root->right, data);}if (root->left == nullptr || root->right == nullptr) {return root;}Node<T>* temp = minValueNode(root->right);root->data = temp->data;return deleteBST(root->right, temp->data);
}template <typename T>
void RedBlackTree<T>::fixDelete(Node<T>*& root, Node<T>*& pt) {Node<T>* sibling;while (pt != root && pt->color == BLACK) {if (pt == pt->parent->left) {sibling = pt->parent->right;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateLeft(root, pt->parent);sibling = pt->parent->right;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->right->color == BLACK) {sibling->left->color = BLACK;sibling->color = RED;rotateRight(root, sibling);sibling = pt->parent->right;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->right->color = BLACK;rotateLeft(root, pt->parent);pt = root;}} else {sibling = pt->parent->left;if (sibling->color == RED) {sibling->color = BLACK;pt->parent->color = RED;rotateRight(root, pt->parent);sibling = pt->parent->left;}if (sibling->left->color == BLACK && sibling->right->color == BLACK) {sibling->color = RED;pt = pt->parent;} else {if (sibling->left->color == BLACK) {sibling->right->color = BLACK;sibling->color = RED;rotateLeft(root, sibling);sibling = pt->parent->left;}sibling->color = pt->parent->color;pt->parent->color = BLACK;sibling->left->color = BLACK;rotateRight(root, pt->parent);pt = root;}}}pt->color = BLACK;
}
查找操作

查找操作相对简单,通过比较目标值与当前节点的值,决定向左子树还是右子树移动,直到找到目标值或到达空节点。

template <typename T>
bool RedBlackTree<T>::search(const T& data) {Node<T>* current = root;while (current != nullptr) {if (data == current->data) {return true;} else if (data < current->data) {current = current->left;} else {current = current->right;}}return false;
}
中序遍历

中序遍历用于验证红黑树的结构,确保所有节点按顺序排列。

template <typename T>
void RedBlackTree<T>::inorder() {inorderHelper(root);
}template <typename T>
void RedBlackTree<T>::inorderHelper(Node<T>* root) {if (root == nullptr) return;inorderHelper(root->left);

这篇关于深入理解红黑树:在C++中实现插入、删除和查找操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126345

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取