Python中Excel文件的批量合并和拆分

2024-09-01 07:44

本文主要是介绍Python中Excel文件的批量合并和拆分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python中Excel文件的批量合并和拆分

在Python中处理Excel文件的批量合并和拆分任务,通常涉及使用pandasopenpyxlpathlib等库。以下是详细的说明,包括如何安装这些库,主要功能,API的具体用法,以及高级用法和示例。

1. 库概述

1.1 pandas

  • 主要功能:数据处理和分析,支持读取、合并、拆分Excel文件。
  • 适用场景:数据分析、批量处理、文件合并和拆分。

1.2 openpyxl

  • 主要功能:处理.xlsx文件,支持读取、修改、格式化和写入。
  • 适用场景:对Excel文件进行高级操作,如格式化和复杂的写入操作。

1.3 pathlib

  • 主要功能:操作文件系统路径,提供更高级的路径操作功能。
  • 适用场景:处理文件路径、批量文件操作。

2. 库的安装

安装pandasopenpyxl

pip install pandas openpyxl

pathlib是Python标准库的一部分,不需要额外安装。

3. pathlib库详解

pathlib提供了面向对象的文件和路径操作功能。以下是主要类及其使用方法。

3.1 Path

Path类是pathlib的核心类,表示文件系统中的路径。

3.1.1 构造函数
from pathlib import Path# 创建路径对象
p = Path('data')
3.1.2 常用方法
  • resolve():返回路径的绝对路径。

    abs_path = p.resolve()
    print(abs_path)
    
  • exists():检查路径是否存在。

    exists = p.exists()
    print(exists)
    
  • is_file():检查路径是否为文件。

    is_file = p.is_file()
    print(is_file)
    
  • is_dir():检查路径是否为目录。

    is_dir = p.is_dir()
    print(is_dir)
    
  • mkdir(parents=False, exist_ok=False):创建目录。

    p.mkdir(parents=True, exist_ok=True)  # 创建目录及其父目录
    
  • rmdir():删除目录(目录必须为空)。

    p.rmdir()  # 删除目录
    
  • glob(pattern):按模式匹配路径。

    for file in p.glob('*.xlsx'):print(file)
    
  • match(pattern):检查路径是否符合模式。

    if p.match('*.xlsx'):print("This is an Excel file")
    
  • iterdir():列出目录中的所有文件和子目录。

    for item in p.iterdir():print(item)
    
  • joinpath(*args):拼接路径。

    new_path = p.joinpath('subdir', 'file.xlsx')
    print(new_path)
    

3.2 PurePath

PurePath类提供了路径操作功能,但不涉及实际的文件系统操作。它是一个抽象类,不能直接用于文件操作。PurePath用于在不访问文件系统的情况下处理路径字符串。

3.2.1 主要子类
  • PurePath:基本的纯路径操作类。
  • PurePosixPath:POSIX系统(如Linux和macOS)的路径操作类。
  • PureWindowsPath:Windows系统的路径操作类。
3.2.2 示例
from pathlib import PurePath# 创建PurePath对象
p = PurePath('data', 'file.xlsx')print(p.parts)   # ('data', 'file.xlsx')
print(p.name)    # 'file.xlsx'
print(p.suffix)  # '.xlsx'

3.3 PathPurePath的区别和联系

  • Path:用于实际的文件系统操作,支持文件和目录的创建、删除、移动、查找等操作。Path类在POSIX和Windows系统中有不同的实现,分别是PosixPathWindowsPath

  • PurePath:仅用于路径的字符串操作,不涉及实际的文件系统操作。它提供了一些基本的路径操作功能,如拼接路径、分离路径组件等。PurePath的子类PurePosixPathPureWindowsPath分别用于POSIX和Windows系统的路径字符串操作。

示例对比

from pathlib import Path, PurePath# Path示例
p1 = Path('data', 'file.xlsx')
print(p1.resolve())   # 获取绝对路径
print(p1.exists())    # 检查路径是否存在# PurePath示例
p2 = PurePath('data', 'file.xlsx')
print(p2.parts)       # ('data', 'file.xlsx')
print(p2.name)        # 'file.xlsx'

4. 批量合并Excel文件

4.1 使用pandas批量合并Excel文件

示例

假设有多个Excel文件:file1.xlsxfile2.xlsxfile3.xlsx,每个文件都包含相同结构的数据,我们要将它们合并为一个文件。

import pandas as pd
from pathlib import Path# 获取所有Excel文件的路径
file_paths = Path('data').glob('*.xlsx')# 读取并合并所有Excel文件
data_frames = [pd.read_excel(file, engine='openpyxl') for file in file_paths]
combined_df = pd.concat(data_frames, ignore_index=True)# 保存合并后的DataFrame到一个新的Excel文件
combined_df.to_excel('combined.xlsx', index=False)

4.2 使用openpyxl进行合并

示例

如果需要对合并过程中的格式进行控制,可以使用openpyxl

from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from pathlib import Path
import pandas as pd# 创建一个新的工作簿
wb = Workbook()
ws = wb.active
ws.title = "Combined Data"# 获取所有Excel文件的路径
file_paths = Path('data').glob('*.xlsx')# 读取并合并所有Excel文件
for file in file_paths:df = pd.read_excel(file, engine='openpyxl')# 将DataFrame中的数据添加到工作表中for row in dataframe_to_rows(df, index=False, header=True):ws.append(row)# 保存合并后的工作簿
wb.save('combined_openpyxl.xlsx')

5. 批量拆分Excel文件

5.1 使用pandas批量拆分Excel文件

示例

将一个大Excel文件large_file.xlsx拆分为每个包含200行数据的小文件。

import pandas as pd# 读取大Excel文件
df = pd.read_excel('large_file.xlsx', engine='openpyxl')# 拆分数据
chunk_size = 200
num_chunks = (len(df) + chunk_size - 1) // chunk_sizefor i in range(num_chunks):start_row = i * chunk_sizeend_row = min((i + 1) * chunk_size, len(df))chunk_df = df.iloc[start_row:end_row]# 保存拆分后的DataFrame到新的Excel文件chunk_df.to_excel(f'chunk_{i + 1}.xlsx', index=False)

5.2 使用openpyxl进行拆分

示例

对拆分后的文件进行格式化,如设置标题行的字体为加粗,并保存每个拆分后的文件。

from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import Font
import pandas as pd# 读取大Excel文件
df = pd.read_excel('large_file.xlsx', engine='openpyxl')# 拆分数据
chunk_size = 200
num_chunks = (len(df) + chunk_size - 1) // chunk_sizefor i in range(num_chunks):start_row = i * chunk_sizeend_row = min((i + 1) * chunk_size, len(df))chunk_df = df.iloc[start_row:end_row]# 创建一个新的工作簿wb = Workbook()ws = wb.activews.title = "Data"# 添加数据到工作表for row in dataframe_to_rows(chunk_df, index=False, header=True):ws.append(row)# 设置标题行的字体为加粗for cell in ws[1]:cell.font= Font(bold=True)# 保存拆分后的工作簿wb.save(f'chunk_{i + 1}_openpyxl.xlsx')

6. 数据清理和统计计算

6.1 数据清理

在写入Excel文件前进行数据清理,确保数据质量。

示例
import pandas as pd# 读取数据
df = pd.read_excel('data.xlsx', engine='openpyxl')# 过滤掉不符合条件的数据
df = df[df['Column'] > 0]# 保存清理后的DataFrame
df.to_excel('cleaned_data.xlsx', index=False)

6.2 统计计算

在处理数据时,有时需要进行统计计算,如求和、平均值等。

示例
import pandas as pd# 读取数据
df = pd.read_excel('data.xlsx', engine='openpyxl')# 计算列的总和
total_sum = df['Column'].sum()
print(f"Total Sum: {total_sum}")# 计算列的平均值
average_value = df['Column'].mean()
print(f"Average Value: {average_value}")# 计算列的最大值和最小值
max_value = df['Column'].max()
min_value = df['Column'].min()
print(f"Max Value: {max_value}")
print(f"Min Value: {min_value}")

这些示例展示了如何使用pathlibpandasopenpyxl来处理Excel文件的批量合并和拆分任务,提供了清晰的步骤和代码示例。希望这些信息对你有帮助!

这篇关于Python中Excel文件的批量合并和拆分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126343

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数