Leetcode3243. 新增道路查询后的最短距离 I

2024-09-01 05:44

本文主要是介绍Leetcode3243. 新增道路查询后的最短距离 I,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Every day a Leetcode

题目来源:3243. 新增道路查询后的最短距离 I

解法1:广度优先搜索

暴力。

每次加边后重新跑一遍 BFS,求出从 0 到 n−1 的最短路。

代码:

/** @lc app=leetcode.cn id=3243 lang=cpp** [3243] 新增道路查询后的最短距离 I*/// @lc code=start// 广度优先搜索class Solution
{
public:vector<int> shortestDistanceAfterQueries(int n, vector<vector<int>> &queries){vector<int> e[n];// 建图for (int i = 1; i < n; i++)e[i - 1].push_back(i);auto bfs = [&](){int dis[n];memset(dis, -1, sizeof(dis));queue<int> q;q.push(0);dis[0] = 0;while (!q.empty()){int sn = q.front();q.pop();for (int fn : e[sn])if (dis[fn] == -1){q.push(fn);dis[fn] = dis[sn] + 1;}}return dis[n - 1];};vector<int> ans;for (vector<int> &q : queries){e[q[0]].push_back(q[1]);int res = bfs();ans.push_back(res);}return ans;}
};
// @lc code=end

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(q(n+q)),其中 q 是数组 queries 的长度。每次 BFS 的时间是 O(n+q)。

空间复杂度:O(n+q),其中 q 是数组 queries 的长度。

解法2:动态规划

定义 dp[i] 为从 0 到 i 的最短路。

用 from[i] 记录额外添加的边的终点是 i,起点列表是 from[i]。

我们可以从 i−1 到 i,也可以从 from[i][j] 到 i,这些位置作为转移来源,用其 dp 值 +1 更新 dp[i] 的最小值。

初始值:dp[i]=i。

答案:dp[n−1]。

注意:设添加的边为 l→r,只有当 dp[l]+1<dp[r] 时才更新 DP。

代码:

/** @lc app=leetcode.cn id=3243 lang=cpp** [3243] 新增道路查询后的最短距离 I*/// @lc code=start// 动态规划class Solution
{
public:vector<int> shortestDistanceAfterQueries(int n, vector<vector<int>> &queries){vector<int> dp(n);vector<vector<int>> from(n);// 初始化:dp[i] = iiota(dp.begin(), dp.end(), 0);vector<int> ans;// 状态转移for (vector<int> &q : queries){int l = q[0], r = q[1];from[r].push_back(l);if (dp[l] + 1 < dp[r]){dp[r] = dp[l] + 1;// 更新后面的最短路for (int i = r + 1; i < n; i++){dp[i] = min(dp[i], dp[i - 1] + 1);for (int j : from[i]){// 存在一条 j->i 的路径dp[i] = min(dp[i], dp[j] + 1);}}}ans.push_back(dp[n-1]);}return ans;}
};
// @lc code=end

结果:

在这里插入图片描述

复杂度分析:

时间复杂度:O(q(n+q)),其中 q 是数组 queries 的长度。

空间复杂度:O(n+q),其中 q 是数组 queries 的长度。

这篇关于Leetcode3243. 新增道路查询后的最短距离 I的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126108

相关文章

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优