Python OpenCV -- 直方图均衡化(十三)

2024-09-01 05:38

本文主要是介绍Python OpenCV -- 直方图均衡化(十三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直方图均衡化

    直方图是图像中像素强度分布的图形表达方式。它统计了每一个强度值所具有的像素个数。

                                              

   直方图均衡化是通过拉伸像素强度分布范围来增强图像对比度的一种方法。

                                            

      通过上图可以看到像素主要集中在中间的一些强度值上。直方图均衡化要做的就是 拉伸 这个范围(绿圈圈出来的部分) 少有像素分布

其上的 强度值,对其应用均衡化后,得到中间图所示的直方图。


原理:

     均衡化指的是把一个分布(给定的直方图)映射 到另一个分布(一个更宽更统一的强度值分布),所以强度值分布会在整个范围内展开。

     要想实现均衡化的效果,映射函数应该是一个 累积分布函数 (cdf),对于直方图  H(i),它的 累积分布 H^{'}(i) 是:

                                                                                   H^{'}(i) = \sum_{0 \le j < i} H(j)

  要使用其作为映射函数,我们必须对最大值为255(或者用图像的最大强度值)的累积分布H^{'}(i) 进行归一化。同上例,累积分布函数为:

                                                                               

    最后我们使用一个简单的映射过程来获得均衡化后像素的强度值:

                                                                        


在 Opencv Python 实现 


1. 拉伸直方图(使用查询表方法)

     先检测图像非0的最低(imin)强度值和最高(强度值)。将最低值 imin 设为0,最高值 imax 设为255.中间值按 255.0 * (i - imin) / (imax - imin) + 0.5)

的形式设置。

   示例(这是使用sunny2038 提供的示例代码):

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np image = cv2.imread("113.jpg", 0)  
lut = np.zeros(256, dtype = image.dtype )#创建空的查找表  
hist= cv2.calcHist([image], #计算图像的直方图  [0], #使用的通道  None, #没有使用mask  [256], #it is a 1D histogram  [0.0,255.0])  minBinNo, maxBinNo = 0, 255  #计算从左起第一个不为0的直方图柱的位置  
for binNo, binValue in enumerate(hist):  if binValue != 0:  minBinNo = binNo  break  
#计算从右起第一个不为0的直方图柱的位置  
for binNo, binValue in enumerate(reversed(hist)):  if binValue != 0:  maxBinNo = 255-binNo  break  
print minBinNo, maxBinNo  #生成查找表
for i,v in enumerate(lut):  print i  if i < minBinNo:  lut[i] = 0  elif i > maxBinNo:  lut[i] = 255  else:  lut[i] = int(255.0*(i-minBinNo)/(maxBinNo-minBinNo)+0.5)  #计算,调用OpenCV cv2.LUT函数,参数 image --  输入图像,lut -- 查找表 
result = cv2.LUT(image, lut)  
cv2.imshow("Result", result)  
cv2.imwrite("LutImage.jpg", result)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

效果图(左边是原图)



2.Python Numpy直方图均衡化

     示例(示例代码使用 sunny2038 博客提供的)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np image = cv2.imread("113.jpg", 0)  lut = np.zeros(256, dtype = image.dtype )#创建空的查找表  hist,bins = np.histogram(image.flatten(),256,[0,256])   
cdf = hist.cumsum() #计算累积直方图  
cdf_m = np.ma.masked_equal(cdf,0) #除去直方图中的0值  
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())#等同于前面介绍的lut[i] = int(255.0 *p[i])公式  
cdf = np.ma.filled(cdf_m,0).astype('uint8') #将掩模处理掉的元素补为0  #计算  
result2 = cdf[image]  
result = cv2.LUT(image, cdf)  cv2.imshow("OpenCVLUT", result)  
cv2.imshow("NumPyLUT", result2)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

效果图:




本文参考和转载:

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html#histogram-equalization

http://blog.csdn.net/sunny2038/article/details/9403059

这篇关于Python OpenCV -- 直方图均衡化(十三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126092

相关文章

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模