Python OpenCV -- 直方图均衡化(十三)

2024-09-01 05:38

本文主要是介绍Python OpenCV -- 直方图均衡化(十三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

直方图均衡化

    直方图是图像中像素强度分布的图形表达方式。它统计了每一个强度值所具有的像素个数。

                                              

   直方图均衡化是通过拉伸像素强度分布范围来增强图像对比度的一种方法。

                                            

      通过上图可以看到像素主要集中在中间的一些强度值上。直方图均衡化要做的就是 拉伸 这个范围(绿圈圈出来的部分) 少有像素分布

其上的 强度值,对其应用均衡化后,得到中间图所示的直方图。


原理:

     均衡化指的是把一个分布(给定的直方图)映射 到另一个分布(一个更宽更统一的强度值分布),所以强度值分布会在整个范围内展开。

     要想实现均衡化的效果,映射函数应该是一个 累积分布函数 (cdf),对于直方图  H(i),它的 累积分布 H^{'}(i) 是:

                                                                                   H^{'}(i) = \sum_{0 \le j < i} H(j)

  要使用其作为映射函数,我们必须对最大值为255(或者用图像的最大强度值)的累积分布H^{'}(i) 进行归一化。同上例,累积分布函数为:

                                                                               

    最后我们使用一个简单的映射过程来获得均衡化后像素的强度值:

                                                                        


在 Opencv Python 实现 


1. 拉伸直方图(使用查询表方法)

     先检测图像非0的最低(imin)强度值和最高(强度值)。将最低值 imin 设为0,最高值 imax 设为255.中间值按 255.0 * (i - imin) / (imax - imin) + 0.5)

的形式设置。

   示例(这是使用sunny2038 提供的示例代码):

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np image = cv2.imread("113.jpg", 0)  
lut = np.zeros(256, dtype = image.dtype )#创建空的查找表  
hist= cv2.calcHist([image], #计算图像的直方图  [0], #使用的通道  None, #没有使用mask  [256], #it is a 1D histogram  [0.0,255.0])  minBinNo, maxBinNo = 0, 255  #计算从左起第一个不为0的直方图柱的位置  
for binNo, binValue in enumerate(hist):  if binValue != 0:  minBinNo = binNo  break  
#计算从右起第一个不为0的直方图柱的位置  
for binNo, binValue in enumerate(reversed(hist)):  if binValue != 0:  maxBinNo = 255-binNo  break  
print minBinNo, maxBinNo  #生成查找表
for i,v in enumerate(lut):  print i  if i < minBinNo:  lut[i] = 0  elif i > maxBinNo:  lut[i] = 255  else:  lut[i] = int(255.0*(i-minBinNo)/(maxBinNo-minBinNo)+0.5)  #计算,调用OpenCV cv2.LUT函数,参数 image --  输入图像,lut -- 查找表 
result = cv2.LUT(image, lut)  
cv2.imshow("Result", result)  
cv2.imwrite("LutImage.jpg", result)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

效果图(左边是原图)



2.Python Numpy直方图均衡化

     示例(示例代码使用 sunny2038 博客提供的)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np image = cv2.imread("113.jpg", 0)  lut = np.zeros(256, dtype = image.dtype )#创建空的查找表  hist,bins = np.histogram(image.flatten(),256,[0,256])   
cdf = hist.cumsum() #计算累积直方图  
cdf_m = np.ma.masked_equal(cdf,0) #除去直方图中的0值  
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())#等同于前面介绍的lut[i] = int(255.0 *p[i])公式  
cdf = np.ma.filled(cdf_m,0).astype('uint8') #将掩模处理掉的元素补为0  #计算  
result2 = cdf[image]  
result = cv2.LUT(image, cdf)  cv2.imshow("OpenCVLUT", result)  
cv2.imshow("NumPyLUT", result2)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

效果图:




本文参考和转载:

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/histogram_equalization/histogram_equalization.html#histogram-equalization

http://blog.csdn.net/sunny2038/article/details/9403059

这篇关于Python OpenCV -- 直方图均衡化(十三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126092

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数