怎么在linux下俘获程序奔溃时的调用堆栈

2024-09-01 04:48

本文主要是介绍怎么在linux下俘获程序奔溃时的调用堆栈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://blog.csdn.net/john_crash/article/details/46971535

对于Linux,Mac OS X,android,如果你使用gcc或者编译器使用glibc,你能使用backtrace()函数来打印堆栈信息,backtrace在execinfo.h中申明。 
这里有一个例子,安装一个SIGSEGV处理用来打印stacktrace到stderr。baz()函数引发一个异常。

#include <stdio.h>
#include <execinfo.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>void handler(int sig) {void *array[10];size_t size;// get void*'s for all entries on the stacksize = backtrace(array, 10);// print out all the frames to stderrfprintf(stderr, "Error: signal %d:\n", sig);backtrace_symbols_fd(array, size, STDERR_FILENO);exit(1);
}void baz() {int *foo = (int*)-1; // make a bad pointerprintf("%d\n", *foo);       // causes segfault
}void bar() { baz(); }
void foo() { bar(); }int main(int argc, char **argv) {signal(SIGSEGV, handler);   // install our handlerfoo(); // this will call foo, bar, and baz.  baz segfaults.
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

编译使用-g -rdynamic取得符合信息。

$ gcc -g -rdynamic ./test.c -o test
  • 1

这里例子执行输出:

$ ./test
Error: signal 11:
./test(handler+0x19)[0x400911]
/lib64/tls/libc.so.6[0x3a9b92e380]
./test(baz+0x14)[0x400962]
./test(bar+0xe)[0x400983]
./test(foo+0xe)[0x400993]
./test(main+0x28)[0x4009bd]
/lib64/tls/libc.so.6(__libc_start_main+0xdb)[0x3a9b91c4bb]
./test[0x40086a]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

http://stackoverflow.com/questions/77005/how-to-generate-a-stacktrace-when-my-gcc-c-app-crashes 
关于android如何实现 
https://bitbucket.org/xg/android-game-base/src/c0d969d44a55a76a6fd2677ab5bb434a6dac3bd3/src/com/gmail/whittock/tom/Util/CrashHandler.java?at=default

https://bitbucket.org/xg/android-game-base/src/c0d969d44a55/jni/NativeActivityJNI.cpp#cl-40

这里有一个android下的开源实现 
https://github.com/SalomonBrys/__deprecated__Native-Crash-Handler 
这个版本在native代码奔溃后,俘获并且发送一个java异常。这样ACRA可以进行统一的报告出来。

这篇关于怎么在linux下俘获程序奔溃时的调用堆栈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1125983

相关文章

linux服务之NIS账户管理服务方式

《linux服务之NIS账户管理服务方式》:本文主要介绍linux服务之NIS账户管理服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、所需要的软件二、服务器配置1、安装 NIS 服务2、设定 NIS 的域名 (NIS domain name)3、修改主

Linux实现简易版Shell的代码详解

《Linux实现简易版Shell的代码详解》本篇文章,我们将一起踏上一段有趣的旅程,仿照CentOS–Bash的工作流程,实现一个功能虽然简单,但足以让你深刻理解Shell工作原理的迷你Sh... 目录一、程序流程分析二、代码实现1. 打印命令行提示符2. 获取用户输入的命令行3. 命令行解析4. 执行命令

SpringBoot后端实现小程序微信登录功能实现

《SpringBoot后端实现小程序微信登录功能实现》微信小程序登录是开发者通过微信提供的身份验证机制,获取用户唯一标识(openid)和会话密钥(session_key)的过程,这篇文章给大家介绍S... 目录SpringBoot实现微信小程序登录简介SpringBoot后端实现微信登录SpringBoo

springboot+vue项目怎么解决跨域问题详解

《springboot+vue项目怎么解决跨域问题详解》:本文主要介绍springboot+vue项目怎么解决跨域问题的相关资料,包括前端代理、后端全局配置CORS、注解配置和Nginx反向代理,... 目录1. 前端代理(开发环境推荐)2. 后端全局配置 CORS(生产环境推荐)3. 后端注解配置(按接口

uniapp小程序中实现无缝衔接滚动效果代码示例

《uniapp小程序中实现无缝衔接滚动效果代码示例》:本文主要介绍uniapp小程序中实现无缝衔接滚动效果的相关资料,该方法可以实现滚动内容中字的不同的颜色更改,并且可以根据需要进行艺术化更改和自... 组件滚动通知只能实现简单的滚动效果,不能实现滚动内容中的字进行不同颜色的更改,下面实现一个无缝衔接的滚动

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

Java使用WebView实现桌面程序的技术指南

《Java使用WebView实现桌面程序的技术指南》在现代软件开发中,许多应用需要在桌面程序中嵌入Web页面,例如,你可能需要在Java桌面应用中嵌入一部分Web前端,或者加载一个HTML5界面以增强... 目录1、简述2、WebView 特点3、搭建 WebView 示例3.1 添加 JavaFX 依赖3

防止SpringBoot程序崩溃的几种方式汇总

《防止SpringBoot程序崩溃的几种方式汇总》本文总结了8种防止SpringBoot程序崩溃的方法,包括全局异常处理、try-catch、断路器、资源限制、监控、优雅停机、健康检查和数据库连接池配... 目录1. 全局异常处理2. 使用 try-catch 捕获异常3. 使用断路器4. 设置最大内存和线

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与