完全背包问题-leetcode-08.11. 硬币

2024-09-01 03:38

本文主要是介绍完全背包问题-leetcode-08.11. 硬币,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述https://leetcode-cn.com/problems/coin-lcci/

面试题 08.11. 硬币

硬币。给定数量不限的硬币,币值为25分、10分、5分和1分,编写代码计算n分有几种表示法。(结果可能会很大,你需要将结果模上1000000007)

等价

背包。给定数量物品,物品体积为25、10、5和1,编写代码背包体积为n,装物品的方法有多少种。(结果可能会很大,你需要将结果模上1000000007)

关键点

1.定义dp数组,dp[i][j]表示前i个物品(本例是硬币),在背包大小(本例是分数)为j的情况下有多少种组合,dp[m][n]就是要求的结果。

2.初始化
   前m个硬币,组成0分的种类都是1;前0个硬币,组成非0分的种类都是0. 即dp[0][0] =dp[1][0]...=dp[m][0] =1;dp[0][1]=dp[0][2]...=dp[0][n] =0 

3.求解过程。
   前一个硬币,组成分数大小为1到n, 种类分别为dp[1][0], dp[1][1], ... , dp[1][n]
   前两个硬币,组成分数大小为1到n, 种类分别为dp[2][0], dp[2][1], ... , dp[2][n]
   ...
   前i个硬币,组成分数大小为1到n, 最大价值分别为dp[i][0], dp[i][1], ... , dp[i][n]

4.递推公式.  求dp[i][j]共有两种情况, 装入第i个硬币或者不装入第i个硬币。
     装入第i个硬币,剩下的分数为j-coins[i-1], 即从前i个硬币里面组合j-coins[i-1]分,对应的种类等价dp[i][j - coin[i - 1]];
     不装入第i个硬币,剩下的分数不变,即从前i-1个硬币里面组合j分,对应的种类dp[i - 1][j];
   即递推公式为dp[i][j] = dp[i-1][j] + dp[i][j - coins[j-coins[i - 1]]]

class Solution(object):def waysToChange(self, n):""":type n: int:rtype: int"""coins = [1, 5, 10, 25]dp = [[0] * (n + 1) for i in range(len(coins) + 1)]dp[0][0] = 1for i in range(1, len(coins) + 1):dp[i][0] = 1for j in range(1, n + 1):dp[i][j] = dp[i - 1][j]if j >= coins[i - 1]:dp[i][j] += dp[i][j - coins[i - 1]]return dp[-1][-1]def test():s = Solution()print s.waysToChange(5) == 2	print s.waysToChange(10) == 4if __name__ == '__main__':test()

dp空间优化分析1

分析递推公式,dp[i][j] = dp[i-1][j] + dp[i][j-coins[i - 1]], 可以看出,在求解dp[i][j]时,不需要保存前i-1行,只需要保存第i行(因为要用到dp[i][j-coins[i - 1]]),和第i-1行的第j个元素(因为要用到dp[i-1][j])。 如果只用一行表示,代码如下。

class Solution(object):def waysToChange(self, n):""":type n: int:rtype: int"""coins = [1, 5, 10, 25]dp = [0] * (n + 1)dp[0] = 1for i in range(1, len(coins) + 1):for j in range(1, n + 1):if j >= coins[i - 1]:dp[j] += dp[j - coins[i - 1]]return dp[-1] % 1000000007def test():s = Solution()print s.waysToChange(5) == 2	print s.waysToChange(10) == 4if __name__ == '__main__':test()

和之前代码相比,少了dp[i][j] = dp[i - 1][j]。因为在遍历到第i行第j列时,还没更新dp[j]时,dp[j]其实是在遍历第i-1行第j列时算出的,相当于前面的dp[i-1][j]。正因为没有覆盖dp[i-1][j]信息,所以dp才可以用一维数组替换二维数组

这篇关于完全背包问题-leetcode-08.11. 硬币的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125835

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复