时空图卷积网络:用于交通流量预测的深度学习框架-1

本文主要是介绍时空图卷积网络:用于交通流量预测的深度学习框架-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

准确的交通预测对于城市交通控制和引导至关重要。由于交通流的高度非线性和复杂性,传统方法无法满足中长期预测任务的需求,且往往忽略了空间和时间的依赖关系。本文提出一种新的深度学习框架——时空图卷积网络(STGCN)来解决交通领域的时间序列预测问题。本文没有应用常规的卷积和递归单元,而是在图上形式化问题,并构建具有完整卷积结构的模型,以较少的参数实现更快的训练速度。实验表明,所提出模型STGCN通过对多尺度交通网络进行建模有效地捕获了全面的时空相关性,并在各种真实世界的交通数据集上始终优于最先进的基线。

介绍

交通在每个人的日常生活中起着至关重要的作用。根据2015年的一项调查,美国司机每天花在开车上的时间平均约为48分钟在这种情况下,准确的实时交通状况预测对道路使用者、私营部门和政府都至关重要。广泛应用的交通服务,如流量控制、路线规划、导航等,也在很大程度上依赖于高质量的交通状态评价。多尺度交通预测是城市交通控制与诱导的前提和基础,也是智能交通系统(Intelligent Transportation System, ITS)的主要功能之一。

在交通研究中,通常选择交通流的基本变量,即速度、容量和密度作为监测当前交通状况和预测未来的指标。根据预测时间的长短,交通预测分为短期(5 ~ 30分钟)、中期和长期(30分钟以上)。大多数流行的统计方法(例如,线性回归)能够在短区间预测中表现良好。然而,由于交通流的不确定性和复杂性,这些方法对于相对长期的预测效果较差。

现有的中长期流量预测研究大致可分为动态建模和数据驱动两大类。动态建模使用数学工具(如微分方程)和物理知识通过计算模拟来制定交通问题[Vlahogianni, 2015]。为了达到稳态,模拟过程不仅需要复杂的系统编程,而且需要消耗巨大的计算能力。不切实际的假设和模型之间的简化也会降低预测精度。因此,随着交通数据采集和存储技术的快速发展,一大批研究人员开始将注意力转向数据驱动的方法。经典的统计模型和机器学习模型是数据驱动方法的两个主要代表。在时间序列分析中,自回归综合移动平均(ARIMA)及其变体是基于经典统计的最综合的方法之一[Ahmed and Cook, 1979;Williams和Hoel, 2003]。然而,这类模型受限于时间序列的平稳性假设,且未能考虑到时间序列的时空相关性。因此,这些方法对高度非线性的交通流具有有限的表征能力。近年来,经典的统计模型在交通预测任务上受到机器学习方法的挑战。这些模型可以实现更高的预测精度和更复杂的数据建模,如k近邻算法(KNN)、支持向量机(SVM)和神经网络(NN)。

深度学习方法已经被广泛成功地应用于各种交通任务中。相关工作取得了重大进展,例如深度信念网络(DBN) [Jia等人,2016;黄等人,2014],栈式自编码器(SAE) [Lv等人,2015;陈等,2016]。然而,这些Dense网络很难从输入中联合提取空间和时间特征。此外,在空间属性受限甚至完全缺失的情况下,这些网络的代表能力将受到严重阻碍。

为了充分利用空间特征,一些研究人员使用卷积神经网络(convolutional neural network, CNN)捕获交通网络之间的相邻关系,并在时间轴上使用循环神经网络(recurrent neural network, RNN)。Wu和Tan[2016]通过结合长短期记忆(LSTM)网络[Hochreiter和Schmidhuber, 1997]和一维CNN,提出了一种用于短期流量预测的特征级融合架构CLTFP。尽管CLTFP采用了一种直接的策略,但它仍然首次尝试对齐空间和时间规律。之后,Shi等人[2015]提出了卷积LSTM,这是一种嵌入卷积层的扩展全连接LSTM (FC-LSTM)。然而,常规的卷积操作限制了模型只能处理网格结构(例如图像、视频),而不是一般的领域。同时,用于序列学习的递归网络需要迭代训练,会逐步引入误差累积。此外,众所周知,基于RNN的网络(包括LSTM)很难训练,计算量很大。

为了克服这些问题,提出了多种策略来有效地建模交通流的时间动态和空间依赖关系。为了充分利用空间信息,本文将交通网络建模为一个整体图,而不是将其单独处理(如网格或分段)。为了解决递归网络固有的缺陷,在时间轴上采用了全卷积结构。提出了一种新的深度学习架构——时空图卷积网络,用于交通预测任务。该架构包括几个时空卷积块,它们是图卷积层[Defferrard等人,2016]和卷积序列学习层的组合,以对空间和时间依赖性进行建模。这是首次在交通研究中应用纯卷积结构同时从图结构时间序列中提取时空特征。在两个真实世界的交通数据集上评估了所提出的模型。实验表明,所提出框架在具有多个预设预测长度和网络规模的预测任务中优于现有基线。

预备知识

道路图上的交通预测与图卷积

交通预测是一个典型的时间序列预测问题,即在给定前M个交通观测值的情况下,预测未来H个时间步内最可能的交通测量值(如速度或交通流量)。

【这里介绍了道路图的预测方式及数据表示、图卷积,不进行赘述】

提出模型

网络结构

在本节中,我们详细介绍了所提出的时空图卷积网络(STGCN)架构。如图2所示,STGCN由多个时空卷积块组成,每个时空卷积块形成一个“三明治”结构,中间有两个门控序列卷积层和一个空间图卷积层。每个模块的详细描述如下。

图2:时空图卷积网络架构

 STGCN框架由两个时空卷积块(ST-Conv块)和一个全连接输出层组成。每个ST-Conv块中间包含两个时间门控卷积层和一个空间图卷积层。在每个块内部采用残差连接和瓶颈策略。输入vt−M+1,…,通过ST-Conv块对vt进行统一处理,以一致地探索空间和时间依赖关系。综合特征通过输出层集成以生成最终预测vˆ。

提取空间特征的图卷积网络

交通网络一般以图的形式组织。道路网络的数学表示是自然而合理的。然而,以往的研究忽略了交通网络的空间属性:将交通网络划分为多个区段或网格,忽略了网络的连通性和全局性。即使是网格上的二维卷积,由于数据建模的妥协,也只能粗略地捕获空间局部性。因此,在该模型中,直接在图结构数据上使用图卷积,以提取空间域中高度有意义的模式和特征。虽然通过等式(2)计算图卷积中的核Θ可能由于与图傅里叶基的乘法O(n2)而非常昂贵,但采用了两种近似策略来克服这个问题:切比雪夫多项式近似和一阶近似。

这篇关于时空图卷积网络:用于交通流量预测的深度学习框架-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1125674

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和