求解组合优化问题的具有递归特征的无监督图神经网络

2024-09-01 00:36

本文主要是介绍求解组合优化问题的具有递归特征的无监督图神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • ABSTRACT
  • 1 Introduction
  • 2 Related Work
  • 3 QRF-GNN方法
  • 4 数值实验
    • 4.1 MAX-CUT

ABSTRACT

  • 介绍了一种名为QRF-GNN的新型算法,有效解决具有二次无约束二进制优化(QUBO)表述的组合问题。依赖无监督学习,从最小化的QUBO放松导出的损失函数。
  • 该架构的关键组成部分是中间GNN预测的递归使用、并行卷积层以及将人工节点特征作为输入的组合。

1 Introduction

二次无约束二进制优化(QUBO)问题是最小化一个二次伪布尔多项式F(x)的问题:

2 Related Work

在Tönshoff等人的研究中,作者提出了RUN-CSP作为最大约束满足问题的一种循环无监督神经网络。该架构包括一组线性函数,为图中的所有变量节点和所有约束的边提供消息传递。在消息传递步骤之后,当前状态以及内部长期状态通过LSTM单元进行更新。基于输出,网络产生变量在搜索域中取特定值的概率。

Amizadeh等人提出了一种无监督GNN来解决SAT和CircuitSAT问题[Amizadeh et al., 2018]。他们使用问题的有向无环图表示,并训练模型以最小化人工损失函数,其最小值对应于具有更高满意度的解决方案。

Karalias和Loukas以稍微不同的方式应用了GNN[Karalias & Loukas, 2020]。它获得了对应于候选解的节点分布。该模型通过最小化概率惩罚函数进行训练,并使用顺序解码来获得离散解,降低其不可行的概率。

在Wang等人的研究中,作者引入了GNN-1N,将负面消息传递技术适应到无监督GNN中,用于解决图着色问题[Wang et al., 2023]。使用特定问题的QUBO公式的连续放松作为损失函数的建议是由Schuetz等人在他们的物理启发式GNN(PI-GNN)中提出的[Schuetz et al., 2022a]。PI-GNN的基础架构包括一个可训练的嵌入层,用于生成节点的输入特征,以及几个图卷积层

这篇关于求解组合优化问题的具有递归特征的无监督图神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125445

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke