分享几个简单的Pandas数据处理函数

2024-08-31 23:12

本文主要是介绍分享几个简单的Pandas数据处理函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文末赠免费精品编程资料~~

大家好,今天给大家简单分享几个好用的Pandas数据处理函数。

id,category,sub_category,sales,year,var1,var2,age,score,status,quantity
1,A,B,100,2019,50,70,35,85,active,100
2,B,C,120,2020,60,80,28,90,inactive,200
3,A,C,110,2020,70,90,32,75,active,150
4,D,E,130,2019,80,100,30,80,active,180
5,A,B,140,2021,90,110,29,95,inactive,250

以上模拟数据可以复制后使用pd.read_clipboard(sep=',')读取。

图片

1. melt 和 pivot

melt 场景:假设原始数据集中var1var2代表产品在不同季度的销售额,我们可以将这两列扁平化,方便后续针对季度进行分析或绘制折线图。

# 扁平化季度销售额数据
df_melted = pd.melt(df, id_vars=['id', 'category', 'sub_category', 'year'], value_vars=['var1', 'var2'], var_name='quarter', value_name='quarter_sales')

图片

pivot 场景:完成分析或可视化后,可能需要将扁平化的数据恢复原样。

# 将扁平化的季度销售额数据恢复为宽格式
df_pivoted = df_melted.pivot(index=['id', 'category', 'sub_category', 'year'], columns='quarter', values='quarter_sales')

图片

2. crosstab

crosstab 场景:若我们要分析不同类别产品在子类别中的分布情况,可以创建交叉表。

# 创建 category 和 sub_category 的交叉表并显示频数
cross_tab = pd.crosstab(df['category'], df['sub_category'], margins=True)
cross_tab

图片

3. between

between 场景:在进行数据分析时,我们可能只关心某个年龄段的客户数据,比如筛选出20到40岁的活跃用户及其购买情况。

# 筛选出年龄在20至40岁并且状态为 active 的用户及其销售额
df_filtered = df[(df['age'].between(20, 40)) & (df['status'] == 'active')]# 分析这部分用户的销售额分布
df_filtered[['age', 'sales']].describe()

图片

4. clip

clip 场景:在对用户评分进行分析时,可能存在录入错误导致的过高或过低评分,我们可以对其进行合理限制。

# 限制 score 列的值在0到100之间
df['score'].clip(lower=0, upper=100, inplace=True)# 验证处理效果并计算修正后的评分平均值
print("修正后的评分平均值:", df['score'].mean())

图片

5. replace

replace 场景:在进行用户状态分类时,可能会统一更改某些状态标签以便于后续分析,例如将'inactive'改为'not_active'。

# 将用户状态'inactive'替换为'not_active'
df['status'].replace(to_replace='inactive', value='not_active', inplace=True)# 分别计算新旧标签下用户的状态分布
df['status'].value_counts()

图片

 

文末福利

如果你对Python感兴趣的话,可以试试我整理的这一份全套的Python学习资料,【点击这里】免费领取!

包括:Python激活码+安装包、Python
web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

① Python所有方向的学习路线图,清楚各个方向要学什么东西

② 100多节Python课程视频,涵盖必备基础、爬虫和数据分析

③ 100多个Python实战案例,学习不再是只会理论

④ 华为出品独家Python漫画教程,手机也能学习

⑤ 历年互联网企业Python面试真题,复习时非常方便

这篇关于分享几个简单的Pandas数据处理函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125264

相关文章

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

Linux从文件中提取特定内容的实用技巧分享

《Linux从文件中提取特定内容的实用技巧分享》在日常数据处理和配置文件管理中,我们经常需要从大型文件中提取特定内容,本文介绍的提取特定行技术正是这些高级操作的基础,以提取含有1的简单需求为例,我们可... 目录引言1、方法一:使用 grep 命令1.1 grep 命令基础1.2 命令详解1.3 高级用法2

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http