python基础-进程池、submit同异步调用、shutdown参数、ProcessPoolExecutor进程池、进程池ftp

本文主要是介绍python基础-进程池、submit同异步调用、shutdown参数、ProcessPoolExecutor进程池、进程池ftp,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      • 引入进程池
      • 使用ProcessPoolExecutor进程池
      • 使用shutdown
      • 使用submit同步调用
      • 使用submit异步调用
      • 进程池实现ftp

引入进程池

在学习线程池之前,我们先看一个例子

from multiprocessing import  Process
import  time
def task(name):print("name",name)time.sleep(1)if __name__ == "__main__":start = time.time()p1 = Process(target=task,args=("safly1",))p2 = Process(target=task, args=("safly2",))p3 = Process(target=task, args=("safly3",))p1.start()p2.start()p3.start()p1.join()p2.join()p3.join()print("main")end = time.time()print(end- start)

输出如下:

name safly1
name safly2
name safly3
main
1.2071197032928467

以上的方式是一个个创建进程,这样的耗费时间才1秒多,虽然高效,但是有什么弊端呢?
如果并发很大的话,会给服务器带来很大的压力,所以引入了进程池的概念

使用ProcessPoolExecutor进程池

Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

通过ProcessPoolExecutor 来做示例。
我们来看一个最简单的进程池

from concurrent.futures import ProcessPoolExecutor
import  time
def task(name):print("name",name)time.sleep(1)if __name__ == "__main__":start = time.time()ex = ProcessPoolExecutor(2)for i in range(5):ex.submit(task,"safly%d"%i)ex.shutdown(wait=True)print("main")end = time.time()print(end - start)

输出如下:

E:\python\python_sdk\python.exe "E:/python/py_pro/4 进程池.py"
name safly0
name safly1
name safly2
name safly3
name safly4
main
3.212218999862671

简单解释下:
ProcessPoolExecutor(2)创建一个进程池,容量为2,循环submit出5个进程,然后就在线程池队列里面,执行多个进程,ex.shutdown(wait=True)意思是进程都执行完毕,在执行主进程的内容

使用shutdown

ex.shutdown(wait=True)是进程池内部的进程都执行完毕,才会关闭,然后执行后续代码
如果改成false呢?看如下代码

from concurrent.futures import ProcessPoolExecutor
import  time
def task(name):print("name",name)time.sleep(1)if __name__ == "__main__":start = time.time()ex = ProcessPoolExecutor(2)for i in range(5):ex.submit(task,"safly%d"%i)ex.shutdown(wait=False)print("main")end = time.time()print(end - start)

输出如下:

main
0.01500844955444336
name safly0
name safly1
name safly2
name safly3
name safly4

使用submit同步调用

同步调用:提交/调用一个任务,然后就在原地等着,等到该任务执行完毕拿到结果,再执行下一行代码

from concurrent.futures import ProcessPoolExecutor
import time, random, osdef piao(name, n):print('%s is piaoing %s' % (name, os.getpid()))time.sleep(1)return n ** 2if __name__ == '__main__':p = ProcessPoolExecutor(2)start = time.time()for i in range(5):res=p.submit(piao,'safly %s' %i,i).result() #同步调用print(res)p.shutdown(wait=True)print('主', os.getpid())stop = time.time()print(stop - start)

输出如下:

E:\python\python_sdk\python.exe "E:/python/py_pro/4 进程池.py"
safly 0 is piaoing 12996
0
safly 1 is piaoing 14044
1
safly 2 is piaoing 12996
4
safly 3 is piaoing 14044
9
safly 4 is piaoing 12996
1612932
5.202786684036255Process finished with exit code 0

使用submit异步调用

异步调用: 提交/调用一个任务,不在原地等着,直接执行下一行代码


# from multiprocessing import Process,Pool
from concurrent.futures import ProcessPoolExecutor
import time, random, osdef piao(name, n):print('%s is piaoing %s' % (name, os.getpid()))time.sleep(1)return n ** 2if __name__ == '__main__':p = ProcessPoolExecutor(2)objs = []start = time.time()for i in range(5):obj = p.submit(piao, 'safly %s' % i, i)  # 异步调用objs.append(obj)p.shutdown(wait=True)print('主', os.getpid())for obj in objs:print(obj.result())stop = time.time()print(stop - start)

输出如下:

E:\python\python_sdk\python.exe "E:/python/py_pro/4 进程池.py"
safly 0 is piaoing 1548
safly 1 is piaoing 7872safly 2 is piaoing 1548
safly 3 is piaoing 7872safly 4 is piaoing 15487808
0
1
4
9
16
3.202626943588257

输出信息的换行是我标识有输出停顿的
简单说下执行流程:
由于进程池容量是容纳2个进程,所以会2+2+1 三次进入线程池执行,花费3秒

如果我们改下上面的代码,修改的代码如下:

from concurrent.futures import ProcessPoolExecutor
import time, random, osdef piao(name, n):print('%s is piaoing %s' % (name, os.getpid()))time.sleep(1)return n ** 2if __name__ == '__main__':p = ProcessPoolExecutor(2)objs = []start = time.time()for i in range(5):obj = p.submit(piao, 'safly %s' % i, i)  # 异步调用objs.append(obj)for obj in objs:print(obj.result())p.shutdown(wait=True)print('主', os.getpid())stop = time.time()print(stop - start)

输出如下:(同样我用换行,标识出输出的时间段了)

E:\python\python_sdk\python.exe "E:/python/py_pro/4 进程池.py"
safly 0 is piaoing 7852
safly 1 is piaoing 8484safly 2 is piaoing 7852
0
safly 3 is piaoing 8484
1safly 4 is piaoing 7852
4
9166816
3.178352117538452

进程池实现ftp

服务端:

from socket import *
from concurrent.futures import ProcessPoolExecutor
import osserver=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)def talk(conn,client_addr):print('进程pid: %s' %os.getpid())while True:try:msg=conn.recv(1024)if not msg:breakconn.send(msg.upper())except Exception:breakif __name__ == '__main__':p=ProcessPoolExecutor(5)while True:conn,client_addr=server.accept()p.submit(talk,conn,client_addr)

客户端:

from socket import *client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))while True:msg=input('>>: ').strip()if not msg:continueclient.send(msg.encode('utf-8'))msg=client.recv(1024)print(msg.decode('utf-8'))

这篇关于python基础-进程池、submit同异步调用、shutdown参数、ProcessPoolExecutor进程池、进程池ftp的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1125192

相关文章

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Python程序的文件头部声明小结

《Python程序的文件头部声明小结》在Python文件的顶部声明编码通常是必须的,尤其是在处理非ASCII字符时,下面就来介绍一下两种头部文件声明,具有一定的参考价值,感兴趣的可以了解一下... 目录一、# coding=utf-8二、#!/usr/bin/env python三、运行Python程序四、

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或