lstm+ctc 实现ocr识别

2024-08-31 18:38
文章标签 实现 lstm 识别 ocr ctc

本文主要是介绍lstm+ctc 实现ocr识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:

https://zhuanlan.zhihu.com/p/21344595


OCR是一个古老的研究领域,简单说就是把图片上的文字转化为文本的过程。在最近几年随着大数据的发展,广大爬虫工程师在对抗验证码时也得用上OCR。所以,这篇文章主要说的OCR其实就是图片验证码的识别。OCR并不是我的研究方向,我研究这个问题是因为OCR是一个可以同时用CNN,RNN两种算法都可以很好解决的问题,所以用这个问题来熟悉一个深度学习框架是非常适合的。我主要通过研究这个问题来了解mxnet

验证码识别的思路非常暴力,大概就是这样:

  1. 去噪+二值化
  2. 字符分割
  3. 每个字符识别

验证码的难度在这3步上都有反应。比如

  1. 噪声:加一条贯穿全图的曲线,比如网格线,还有图的一半是白底黑字,另一半是黑底白字。
  2. 分割:字符粘连,7和4粘在一起。
  3. 识别:字符各种扭曲,各种旋转。

但相对而言,难度最大的是第2步,分割。所以就有人想,我能不能不做分割,就把验证码给识别了。深度学习擅长做端到端的学习,因此这个不分割就想识别的事情交给深度学习是最合适的。

基于CNN的验证码识别

基于CNN去识别验证码,其实就是一个图片的多标签学习问题。比如考虑一个4个数字组成的验证码,那么相当于每张图就有4个标签。那么我们把原始图片作为输入,4个标签作为输出,扔进CNN里,看看能不能收敛就行了。

下面这段代码定义了mxnet上的一个DataIter,我们用了python-captcha这个库来自动生成训练样本,所以可以假设训练样本是无穷多的。

class OCRIter(mx.io.DataIter):
def __init__(self, count, batch_size, num_label, height, width):super(OCRIter, self).__init__()self.captcha = ImageCaptcha(fonts=['./data/OpenSans-Regular.ttf'])self.batch_size = batch_sizeself.count = countself.height = heightself.width = widthself.provide_data = [('data', (batch_size, 3, height, width))]self.provide_label = [('softmax_label', (self.batch_size, num_label))]def __iter__(self):for k in range(self.count / self.batch_size):data = []label = []for i in range(self.batch_size):# 生成一个四位数字的随机字符串num = gen_rand() # 生成随机字符串对应的验证码图片img = self.captcha.generate(num)img = np.fromstring(img.getvalue(), dtype='uint8')img = cv2.imdecode(img, cv2.IMREAD_COLOR)img = cv2.resize(img, (self.width, self.height))cv2.imwrite("./tmp" + str(i % 10) + ".png", img)img = np.multiply(img, 1/255.0)img = img.transpose(2, 0, 1)data.append(img)label.append(get_label(num))data_all = [mx.nd.array(data)]label_all = [mx.nd.array(label)]data_names = ['data']label_names = ['softmax_label']data_batch = OCRBatch(data_names, data_all, label_names, label_all)yield data_batchdef reset(self):pass

下面这段代码是网络结构:

def get_ocrnet():data = mx.symbol.Variable('data')label = mx.symbol.Variable('softmax_label')conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=32)pool1 = mx.symbol.Pooling(data=conv1, pool_type="max", kernel=(2,2), stride=(1, 1))relu1 = mx.symbol.Activation(data=pool1, act_type="relu")conv2 = mx.symbol.Convolution(data=relu1, kernel=(5,5), num_filter=32)pool2 = mx.symbol.Pooling(data=conv2, pool_type="avg", kernel=(2,2), stride=(1, 1))relu2 = mx.symbol.Activation(data=pool2, act_type="relu")conv3 = mx.symbol.Convolution(data=relu2, kernel=(3,3), num_filter=32)pool3 = mx.symbol.Pooling(data=conv3, pool_type="avg", kernel=(2,2), stride=(1, 1))relu3 = mx.symbol.Activation(data=pool3, act_type="relu")flatten = mx.symbol.Flatten(data = relu3)fc1 = mx.symbol.FullyConnected(data = flatten, num_hidden = 512)fc21 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc22 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc23 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc24 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc2 = mx.symbol.Concat(*[fc21, fc22, fc23, fc24], dim = 0)label = mx.symbol.transpose(data = label)label = mx.symbol.Reshape(data = label, target_shape = (0, ))return mx.symbol.SoftmaxOutput(data = fc2, label = label, name = "softmax")

上面这个网络要稍微解释一下。因为这个问题是一个有顺序的多label的图片分类问题。我们在fc1的层上面接了4个Full Connect层(fc21,fc22,fc23,fc24),用来对应不同位置的4个数字label。然后将它们Concat在一起。然后同时学习这4个label。目前用上面的网络训练,4位数字全部预测正确的精度可以达到95%左右(因为是无穷多的训练样本,所以只要能不断训练下去,精度还是可以提高的,只是我训练到95%左右就停止训练了)。

用CNN解决验证码识别有个问题,就是必须针对固定长度的验证码去做。如果长度不固定,或者是手写一行字的识别这种长度肯定不固定的问题,CNN就没办法了。这个时候就需要引入序列学习的模型了。

基于LSTM+CTC的验证码识别

LSTM+CTC被广泛的用在语音识别领域把音频解码成汉字,从这个角度说,OCR其实就是把图片解码成汉字,并没有太本质的区别。而且在整个过程中,不需要提前知道究竟要解码成几个字。

这个算法的思路是这样的。假设要识别的图片是80x30的图片,里面是一个长度为k的数字验证码。那么我们可以沿着x轴对图片进行切分,切成n个图片,作为LSTM的n个输入。在最极端的例子里,n=80。那么就是把图片的每一列都作为输入。LSTM有n个输入就会有n个输出,而这n个输出可以通过CTC计算和k个验证码标签之间的Loss,然后进行反向传播。

我们同样用python-captcha自动生成验证码作为训练样本,用如下的代码来定义网络结构:

def lstm_unroll(num_lstm_layer, seq_len,num_hidden, num_label):param_cells = []last_states = []for i in range(num_lstm_layer):state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),h=mx.sym.Variable("l%d_init_h" % i))last_states.append(state)assert(len(last_states) == num_lstm_layer)# embeding layerdata = mx.sym.Variable('data')label = mx.sym.Variable('label')wordvec = mx.sym.SliceChannel(data=data, num_outputs=seq_len, squeeze_axis=1)hidden_all = []for seqidx in range(seq_len):hidden = wordvec[seqidx]for i in range(num_lstm_layer):next_state = lstm(num_hidden, indata=hidden,prev_state=last_states[i],param=param_cells[i],seqidx=seqidx, layeridx=i)hidden = next_state.hlast_states[i] = next_statehidden_all.append(hidden)hidden_concat = mx.sym.Concat(*hidden_all, dim=0)pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=11)label = mx.sym.Reshape(data=label, target_shape=(0,))label = mx.sym.Cast(data = label, dtype = 'int32')sm = mx.sym.WarpCTC(data=pred, label=label, label_length = num_label, input_length = seq_len)return sm

这里有2点需要注意的:

  1. 在一般的mxnet的lstm实现中,label需要转置,但是在warpctc的实现中不需要。
  2. label需要是int32的格式,需要cast。

关于CTC Loss的重要性,我试过不用CTC的两个不同想法:

  1. 用encode-decode模式。用80个输入做encode,然后decode成4个输出。实测效果很差。
  2. 4个label每个copy20遍,从而变成80个label。实测也很差。

用ctc loss的体会就是,如果input的长度远远大于label的长度,比如我这里是80和4的关系。那么一开始的收敛会比较慢。在其中有一段时间cost几乎不变。此刻一定要有耐心,最终一定会收敛的。在ocr识别的这个例子上最终可以收敛到95%的精度。

这篇关于lstm+ctc 实现ocr识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124687

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too