lstm+ctc 实现ocr识别

2024-08-31 18:38
文章标签 实现 lstm 识别 ocr ctc

本文主要是介绍lstm+ctc 实现ocr识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:

https://zhuanlan.zhihu.com/p/21344595


OCR是一个古老的研究领域,简单说就是把图片上的文字转化为文本的过程。在最近几年随着大数据的发展,广大爬虫工程师在对抗验证码时也得用上OCR。所以,这篇文章主要说的OCR其实就是图片验证码的识别。OCR并不是我的研究方向,我研究这个问题是因为OCR是一个可以同时用CNN,RNN两种算法都可以很好解决的问题,所以用这个问题来熟悉一个深度学习框架是非常适合的。我主要通过研究这个问题来了解mxnet

验证码识别的思路非常暴力,大概就是这样:

  1. 去噪+二值化
  2. 字符分割
  3. 每个字符识别

验证码的难度在这3步上都有反应。比如

  1. 噪声:加一条贯穿全图的曲线,比如网格线,还有图的一半是白底黑字,另一半是黑底白字。
  2. 分割:字符粘连,7和4粘在一起。
  3. 识别:字符各种扭曲,各种旋转。

但相对而言,难度最大的是第2步,分割。所以就有人想,我能不能不做分割,就把验证码给识别了。深度学习擅长做端到端的学习,因此这个不分割就想识别的事情交给深度学习是最合适的。

基于CNN的验证码识别

基于CNN去识别验证码,其实就是一个图片的多标签学习问题。比如考虑一个4个数字组成的验证码,那么相当于每张图就有4个标签。那么我们把原始图片作为输入,4个标签作为输出,扔进CNN里,看看能不能收敛就行了。

下面这段代码定义了mxnet上的一个DataIter,我们用了python-captcha这个库来自动生成训练样本,所以可以假设训练样本是无穷多的。

class OCRIter(mx.io.DataIter):
def __init__(self, count, batch_size, num_label, height, width):super(OCRIter, self).__init__()self.captcha = ImageCaptcha(fonts=['./data/OpenSans-Regular.ttf'])self.batch_size = batch_sizeself.count = countself.height = heightself.width = widthself.provide_data = [('data', (batch_size, 3, height, width))]self.provide_label = [('softmax_label', (self.batch_size, num_label))]def __iter__(self):for k in range(self.count / self.batch_size):data = []label = []for i in range(self.batch_size):# 生成一个四位数字的随机字符串num = gen_rand() # 生成随机字符串对应的验证码图片img = self.captcha.generate(num)img = np.fromstring(img.getvalue(), dtype='uint8')img = cv2.imdecode(img, cv2.IMREAD_COLOR)img = cv2.resize(img, (self.width, self.height))cv2.imwrite("./tmp" + str(i % 10) + ".png", img)img = np.multiply(img, 1/255.0)img = img.transpose(2, 0, 1)data.append(img)label.append(get_label(num))data_all = [mx.nd.array(data)]label_all = [mx.nd.array(label)]data_names = ['data']label_names = ['softmax_label']data_batch = OCRBatch(data_names, data_all, label_names, label_all)yield data_batchdef reset(self):pass

下面这段代码是网络结构:

def get_ocrnet():data = mx.symbol.Variable('data')label = mx.symbol.Variable('softmax_label')conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=32)pool1 = mx.symbol.Pooling(data=conv1, pool_type="max", kernel=(2,2), stride=(1, 1))relu1 = mx.symbol.Activation(data=pool1, act_type="relu")conv2 = mx.symbol.Convolution(data=relu1, kernel=(5,5), num_filter=32)pool2 = mx.symbol.Pooling(data=conv2, pool_type="avg", kernel=(2,2), stride=(1, 1))relu2 = mx.symbol.Activation(data=pool2, act_type="relu")conv3 = mx.symbol.Convolution(data=relu2, kernel=(3,3), num_filter=32)pool3 = mx.symbol.Pooling(data=conv3, pool_type="avg", kernel=(2,2), stride=(1, 1))relu3 = mx.symbol.Activation(data=pool3, act_type="relu")flatten = mx.symbol.Flatten(data = relu3)fc1 = mx.symbol.FullyConnected(data = flatten, num_hidden = 512)fc21 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc22 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc23 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc24 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc2 = mx.symbol.Concat(*[fc21, fc22, fc23, fc24], dim = 0)label = mx.symbol.transpose(data = label)label = mx.symbol.Reshape(data = label, target_shape = (0, ))return mx.symbol.SoftmaxOutput(data = fc2, label = label, name = "softmax")

上面这个网络要稍微解释一下。因为这个问题是一个有顺序的多label的图片分类问题。我们在fc1的层上面接了4个Full Connect层(fc21,fc22,fc23,fc24),用来对应不同位置的4个数字label。然后将它们Concat在一起。然后同时学习这4个label。目前用上面的网络训练,4位数字全部预测正确的精度可以达到95%左右(因为是无穷多的训练样本,所以只要能不断训练下去,精度还是可以提高的,只是我训练到95%左右就停止训练了)。

用CNN解决验证码识别有个问题,就是必须针对固定长度的验证码去做。如果长度不固定,或者是手写一行字的识别这种长度肯定不固定的问题,CNN就没办法了。这个时候就需要引入序列学习的模型了。

基于LSTM+CTC的验证码识别

LSTM+CTC被广泛的用在语音识别领域把音频解码成汉字,从这个角度说,OCR其实就是把图片解码成汉字,并没有太本质的区别。而且在整个过程中,不需要提前知道究竟要解码成几个字。

这个算法的思路是这样的。假设要识别的图片是80x30的图片,里面是一个长度为k的数字验证码。那么我们可以沿着x轴对图片进行切分,切成n个图片,作为LSTM的n个输入。在最极端的例子里,n=80。那么就是把图片的每一列都作为输入。LSTM有n个输入就会有n个输出,而这n个输出可以通过CTC计算和k个验证码标签之间的Loss,然后进行反向传播。

我们同样用python-captcha自动生成验证码作为训练样本,用如下的代码来定义网络结构:

def lstm_unroll(num_lstm_layer, seq_len,num_hidden, num_label):param_cells = []last_states = []for i in range(num_lstm_layer):state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),h=mx.sym.Variable("l%d_init_h" % i))last_states.append(state)assert(len(last_states) == num_lstm_layer)# embeding layerdata = mx.sym.Variable('data')label = mx.sym.Variable('label')wordvec = mx.sym.SliceChannel(data=data, num_outputs=seq_len, squeeze_axis=1)hidden_all = []for seqidx in range(seq_len):hidden = wordvec[seqidx]for i in range(num_lstm_layer):next_state = lstm(num_hidden, indata=hidden,prev_state=last_states[i],param=param_cells[i],seqidx=seqidx, layeridx=i)hidden = next_state.hlast_states[i] = next_statehidden_all.append(hidden)hidden_concat = mx.sym.Concat(*hidden_all, dim=0)pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=11)label = mx.sym.Reshape(data=label, target_shape=(0,))label = mx.sym.Cast(data = label, dtype = 'int32')sm = mx.sym.WarpCTC(data=pred, label=label, label_length = num_label, input_length = seq_len)return sm

这里有2点需要注意的:

  1. 在一般的mxnet的lstm实现中,label需要转置,但是在warpctc的实现中不需要。
  2. label需要是int32的格式,需要cast。

关于CTC Loss的重要性,我试过不用CTC的两个不同想法:

  1. 用encode-decode模式。用80个输入做encode,然后decode成4个输出。实测效果很差。
  2. 4个label每个copy20遍,从而变成80个label。实测也很差。

用ctc loss的体会就是,如果input的长度远远大于label的长度,比如我这里是80和4的关系。那么一开始的收敛会比较慢。在其中有一段时间cost几乎不变。此刻一定要有耐心,最终一定会收敛的。在ocr识别的这个例子上最终可以收敛到95%的精度。

这篇关于lstm+ctc 实现ocr识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124687

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1