lstm+ctc 实现ocr识别

2024-08-31 18:38
文章标签 实现 lstm 识别 ocr ctc

本文主要是介绍lstm+ctc 实现ocr识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:

https://zhuanlan.zhihu.com/p/21344595


OCR是一个古老的研究领域,简单说就是把图片上的文字转化为文本的过程。在最近几年随着大数据的发展,广大爬虫工程师在对抗验证码时也得用上OCR。所以,这篇文章主要说的OCR其实就是图片验证码的识别。OCR并不是我的研究方向,我研究这个问题是因为OCR是一个可以同时用CNN,RNN两种算法都可以很好解决的问题,所以用这个问题来熟悉一个深度学习框架是非常适合的。我主要通过研究这个问题来了解mxnet

验证码识别的思路非常暴力,大概就是这样:

  1. 去噪+二值化
  2. 字符分割
  3. 每个字符识别

验证码的难度在这3步上都有反应。比如

  1. 噪声:加一条贯穿全图的曲线,比如网格线,还有图的一半是白底黑字,另一半是黑底白字。
  2. 分割:字符粘连,7和4粘在一起。
  3. 识别:字符各种扭曲,各种旋转。

但相对而言,难度最大的是第2步,分割。所以就有人想,我能不能不做分割,就把验证码给识别了。深度学习擅长做端到端的学习,因此这个不分割就想识别的事情交给深度学习是最合适的。

基于CNN的验证码识别

基于CNN去识别验证码,其实就是一个图片的多标签学习问题。比如考虑一个4个数字组成的验证码,那么相当于每张图就有4个标签。那么我们把原始图片作为输入,4个标签作为输出,扔进CNN里,看看能不能收敛就行了。

下面这段代码定义了mxnet上的一个DataIter,我们用了python-captcha这个库来自动生成训练样本,所以可以假设训练样本是无穷多的。

class OCRIter(mx.io.DataIter):
def __init__(self, count, batch_size, num_label, height, width):super(OCRIter, self).__init__()self.captcha = ImageCaptcha(fonts=['./data/OpenSans-Regular.ttf'])self.batch_size = batch_sizeself.count = countself.height = heightself.width = widthself.provide_data = [('data', (batch_size, 3, height, width))]self.provide_label = [('softmax_label', (self.batch_size, num_label))]def __iter__(self):for k in range(self.count / self.batch_size):data = []label = []for i in range(self.batch_size):# 生成一个四位数字的随机字符串num = gen_rand() # 生成随机字符串对应的验证码图片img = self.captcha.generate(num)img = np.fromstring(img.getvalue(), dtype='uint8')img = cv2.imdecode(img, cv2.IMREAD_COLOR)img = cv2.resize(img, (self.width, self.height))cv2.imwrite("./tmp" + str(i % 10) + ".png", img)img = np.multiply(img, 1/255.0)img = img.transpose(2, 0, 1)data.append(img)label.append(get_label(num))data_all = [mx.nd.array(data)]label_all = [mx.nd.array(label)]data_names = ['data']label_names = ['softmax_label']data_batch = OCRBatch(data_names, data_all, label_names, label_all)yield data_batchdef reset(self):pass

下面这段代码是网络结构:

def get_ocrnet():data = mx.symbol.Variable('data')label = mx.symbol.Variable('softmax_label')conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=32)pool1 = mx.symbol.Pooling(data=conv1, pool_type="max", kernel=(2,2), stride=(1, 1))relu1 = mx.symbol.Activation(data=pool1, act_type="relu")conv2 = mx.symbol.Convolution(data=relu1, kernel=(5,5), num_filter=32)pool2 = mx.symbol.Pooling(data=conv2, pool_type="avg", kernel=(2,2), stride=(1, 1))relu2 = mx.symbol.Activation(data=pool2, act_type="relu")conv3 = mx.symbol.Convolution(data=relu2, kernel=(3,3), num_filter=32)pool3 = mx.symbol.Pooling(data=conv3, pool_type="avg", kernel=(2,2), stride=(1, 1))relu3 = mx.symbol.Activation(data=pool3, act_type="relu")flatten = mx.symbol.Flatten(data = relu3)fc1 = mx.symbol.FullyConnected(data = flatten, num_hidden = 512)fc21 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc22 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc23 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc24 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc2 = mx.symbol.Concat(*[fc21, fc22, fc23, fc24], dim = 0)label = mx.symbol.transpose(data = label)label = mx.symbol.Reshape(data = label, target_shape = (0, ))return mx.symbol.SoftmaxOutput(data = fc2, label = label, name = "softmax")

上面这个网络要稍微解释一下。因为这个问题是一个有顺序的多label的图片分类问题。我们在fc1的层上面接了4个Full Connect层(fc21,fc22,fc23,fc24),用来对应不同位置的4个数字label。然后将它们Concat在一起。然后同时学习这4个label。目前用上面的网络训练,4位数字全部预测正确的精度可以达到95%左右(因为是无穷多的训练样本,所以只要能不断训练下去,精度还是可以提高的,只是我训练到95%左右就停止训练了)。

用CNN解决验证码识别有个问题,就是必须针对固定长度的验证码去做。如果长度不固定,或者是手写一行字的识别这种长度肯定不固定的问题,CNN就没办法了。这个时候就需要引入序列学习的模型了。

基于LSTM+CTC的验证码识别

LSTM+CTC被广泛的用在语音识别领域把音频解码成汉字,从这个角度说,OCR其实就是把图片解码成汉字,并没有太本质的区别。而且在整个过程中,不需要提前知道究竟要解码成几个字。

这个算法的思路是这样的。假设要识别的图片是80x30的图片,里面是一个长度为k的数字验证码。那么我们可以沿着x轴对图片进行切分,切成n个图片,作为LSTM的n个输入。在最极端的例子里,n=80。那么就是把图片的每一列都作为输入。LSTM有n个输入就会有n个输出,而这n个输出可以通过CTC计算和k个验证码标签之间的Loss,然后进行反向传播。

我们同样用python-captcha自动生成验证码作为训练样本,用如下的代码来定义网络结构:

def lstm_unroll(num_lstm_layer, seq_len,num_hidden, num_label):param_cells = []last_states = []for i in range(num_lstm_layer):state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),h=mx.sym.Variable("l%d_init_h" % i))last_states.append(state)assert(len(last_states) == num_lstm_layer)# embeding layerdata = mx.sym.Variable('data')label = mx.sym.Variable('label')wordvec = mx.sym.SliceChannel(data=data, num_outputs=seq_len, squeeze_axis=1)hidden_all = []for seqidx in range(seq_len):hidden = wordvec[seqidx]for i in range(num_lstm_layer):next_state = lstm(num_hidden, indata=hidden,prev_state=last_states[i],param=param_cells[i],seqidx=seqidx, layeridx=i)hidden = next_state.hlast_states[i] = next_statehidden_all.append(hidden)hidden_concat = mx.sym.Concat(*hidden_all, dim=0)pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=11)label = mx.sym.Reshape(data=label, target_shape=(0,))label = mx.sym.Cast(data = label, dtype = 'int32')sm = mx.sym.WarpCTC(data=pred, label=label, label_length = num_label, input_length = seq_len)return sm

这里有2点需要注意的:

  1. 在一般的mxnet的lstm实现中,label需要转置,但是在warpctc的实现中不需要。
  2. label需要是int32的格式,需要cast。

关于CTC Loss的重要性,我试过不用CTC的两个不同想法:

  1. 用encode-decode模式。用80个输入做encode,然后decode成4个输出。实测效果很差。
  2. 4个label每个copy20遍,从而变成80个label。实测也很差。

用ctc loss的体会就是,如果input的长度远远大于label的长度,比如我这里是80和4的关系。那么一开始的收敛会比较慢。在其中有一段时间cost几乎不变。此刻一定要有耐心,最终一定会收敛的。在ocr识别的这个例子上最终可以收敛到95%的精度。

这篇关于lstm+ctc 实现ocr识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124687

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S