lstm+ctc 实现ocr识别

2024-08-31 18:38
文章标签 实现 lstm 识别 ocr ctc

本文主要是介绍lstm+ctc 实现ocr识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:

https://zhuanlan.zhihu.com/p/21344595


OCR是一个古老的研究领域,简单说就是把图片上的文字转化为文本的过程。在最近几年随着大数据的发展,广大爬虫工程师在对抗验证码时也得用上OCR。所以,这篇文章主要说的OCR其实就是图片验证码的识别。OCR并不是我的研究方向,我研究这个问题是因为OCR是一个可以同时用CNN,RNN两种算法都可以很好解决的问题,所以用这个问题来熟悉一个深度学习框架是非常适合的。我主要通过研究这个问题来了解mxnet

验证码识别的思路非常暴力,大概就是这样:

  1. 去噪+二值化
  2. 字符分割
  3. 每个字符识别

验证码的难度在这3步上都有反应。比如

  1. 噪声:加一条贯穿全图的曲线,比如网格线,还有图的一半是白底黑字,另一半是黑底白字。
  2. 分割:字符粘连,7和4粘在一起。
  3. 识别:字符各种扭曲,各种旋转。

但相对而言,难度最大的是第2步,分割。所以就有人想,我能不能不做分割,就把验证码给识别了。深度学习擅长做端到端的学习,因此这个不分割就想识别的事情交给深度学习是最合适的。

基于CNN的验证码识别

基于CNN去识别验证码,其实就是一个图片的多标签学习问题。比如考虑一个4个数字组成的验证码,那么相当于每张图就有4个标签。那么我们把原始图片作为输入,4个标签作为输出,扔进CNN里,看看能不能收敛就行了。

下面这段代码定义了mxnet上的一个DataIter,我们用了python-captcha这个库来自动生成训练样本,所以可以假设训练样本是无穷多的。

class OCRIter(mx.io.DataIter):
def __init__(self, count, batch_size, num_label, height, width):super(OCRIter, self).__init__()self.captcha = ImageCaptcha(fonts=['./data/OpenSans-Regular.ttf'])self.batch_size = batch_sizeself.count = countself.height = heightself.width = widthself.provide_data = [('data', (batch_size, 3, height, width))]self.provide_label = [('softmax_label', (self.batch_size, num_label))]def __iter__(self):for k in range(self.count / self.batch_size):data = []label = []for i in range(self.batch_size):# 生成一个四位数字的随机字符串num = gen_rand() # 生成随机字符串对应的验证码图片img = self.captcha.generate(num)img = np.fromstring(img.getvalue(), dtype='uint8')img = cv2.imdecode(img, cv2.IMREAD_COLOR)img = cv2.resize(img, (self.width, self.height))cv2.imwrite("./tmp" + str(i % 10) + ".png", img)img = np.multiply(img, 1/255.0)img = img.transpose(2, 0, 1)data.append(img)label.append(get_label(num))data_all = [mx.nd.array(data)]label_all = [mx.nd.array(label)]data_names = ['data']label_names = ['softmax_label']data_batch = OCRBatch(data_names, data_all, label_names, label_all)yield data_batchdef reset(self):pass

下面这段代码是网络结构:

def get_ocrnet():data = mx.symbol.Variable('data')label = mx.symbol.Variable('softmax_label')conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=32)pool1 = mx.symbol.Pooling(data=conv1, pool_type="max", kernel=(2,2), stride=(1, 1))relu1 = mx.symbol.Activation(data=pool1, act_type="relu")conv2 = mx.symbol.Convolution(data=relu1, kernel=(5,5), num_filter=32)pool2 = mx.symbol.Pooling(data=conv2, pool_type="avg", kernel=(2,2), stride=(1, 1))relu2 = mx.symbol.Activation(data=pool2, act_type="relu")conv3 = mx.symbol.Convolution(data=relu2, kernel=(3,3), num_filter=32)pool3 = mx.symbol.Pooling(data=conv3, pool_type="avg", kernel=(2,2), stride=(1, 1))relu3 = mx.symbol.Activation(data=pool3, act_type="relu")flatten = mx.symbol.Flatten(data = relu3)fc1 = mx.symbol.FullyConnected(data = flatten, num_hidden = 512)fc21 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc22 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc23 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc24 = mx.symbol.FullyConnected(data = fc1, num_hidden = 10)fc2 = mx.symbol.Concat(*[fc21, fc22, fc23, fc24], dim = 0)label = mx.symbol.transpose(data = label)label = mx.symbol.Reshape(data = label, target_shape = (0, ))return mx.symbol.SoftmaxOutput(data = fc2, label = label, name = "softmax")

上面这个网络要稍微解释一下。因为这个问题是一个有顺序的多label的图片分类问题。我们在fc1的层上面接了4个Full Connect层(fc21,fc22,fc23,fc24),用来对应不同位置的4个数字label。然后将它们Concat在一起。然后同时学习这4个label。目前用上面的网络训练,4位数字全部预测正确的精度可以达到95%左右(因为是无穷多的训练样本,所以只要能不断训练下去,精度还是可以提高的,只是我训练到95%左右就停止训练了)。

用CNN解决验证码识别有个问题,就是必须针对固定长度的验证码去做。如果长度不固定,或者是手写一行字的识别这种长度肯定不固定的问题,CNN就没办法了。这个时候就需要引入序列学习的模型了。

基于LSTM+CTC的验证码识别

LSTM+CTC被广泛的用在语音识别领域把音频解码成汉字,从这个角度说,OCR其实就是把图片解码成汉字,并没有太本质的区别。而且在整个过程中,不需要提前知道究竟要解码成几个字。

这个算法的思路是这样的。假设要识别的图片是80x30的图片,里面是一个长度为k的数字验证码。那么我们可以沿着x轴对图片进行切分,切成n个图片,作为LSTM的n个输入。在最极端的例子里,n=80。那么就是把图片的每一列都作为输入。LSTM有n个输入就会有n个输出,而这n个输出可以通过CTC计算和k个验证码标签之间的Loss,然后进行反向传播。

我们同样用python-captcha自动生成验证码作为训练样本,用如下的代码来定义网络结构:

def lstm_unroll(num_lstm_layer, seq_len,num_hidden, num_label):param_cells = []last_states = []for i in range(num_lstm_layer):state = LSTMState(c=mx.sym.Variable("l%d_init_c" % i),h=mx.sym.Variable("l%d_init_h" % i))last_states.append(state)assert(len(last_states) == num_lstm_layer)# embeding layerdata = mx.sym.Variable('data')label = mx.sym.Variable('label')wordvec = mx.sym.SliceChannel(data=data, num_outputs=seq_len, squeeze_axis=1)hidden_all = []for seqidx in range(seq_len):hidden = wordvec[seqidx]for i in range(num_lstm_layer):next_state = lstm(num_hidden, indata=hidden,prev_state=last_states[i],param=param_cells[i],seqidx=seqidx, layeridx=i)hidden = next_state.hlast_states[i] = next_statehidden_all.append(hidden)hidden_concat = mx.sym.Concat(*hidden_all, dim=0)pred = mx.sym.FullyConnected(data=hidden_concat, num_hidden=11)label = mx.sym.Reshape(data=label, target_shape=(0,))label = mx.sym.Cast(data = label, dtype = 'int32')sm = mx.sym.WarpCTC(data=pred, label=label, label_length = num_label, input_length = seq_len)return sm

这里有2点需要注意的:

  1. 在一般的mxnet的lstm实现中,label需要转置,但是在warpctc的实现中不需要。
  2. label需要是int32的格式,需要cast。

关于CTC Loss的重要性,我试过不用CTC的两个不同想法:

  1. 用encode-decode模式。用80个输入做encode,然后decode成4个输出。实测效果很差。
  2. 4个label每个copy20遍,从而变成80个label。实测也很差。

用ctc loss的体会就是,如果input的长度远远大于label的长度,比如我这里是80和4的关系。那么一开始的收敛会比较慢。在其中有一段时间cost几乎不变。此刻一定要有耐心,最终一定会收敛的。在ocr识别的这个例子上最终可以收敛到95%的精度。

这篇关于lstm+ctc 实现ocr识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124687

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库