黑马点评——商户查询缓存(P37店铺类型查询业务添加缓存练习题答案)redis缓存、更新、穿透、雪崩、击穿、工具封装

本文主要是介绍黑马点评——商户查询缓存(P37店铺类型查询业务添加缓存练习题答案)redis缓存、更新、穿透、雪崩、击穿、工具封装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 什么是缓存?
  • 添加Redis缓存
    • 店铺类型查询业务添加缓存练习题
  • 缓存更新策略
    • 给查询商铺的缓存添加超时剔除和主动更新的策略
  • 缓存穿透
    • 缓存空对象
    • 布隆过滤
  • 缓存雪崩
    • 解决方案
  • 缓存击穿
    • 解决方案
    • 基于互斥锁方式解决缓存击穿问题
    • 基于逻辑过期的方式解决缓存击穿问题
  • 缓存工具封装

什么是缓存?

在这里插入图片描述

缓存也要考虑成本的问题,不是随便用的
在这里插入图片描述

添加Redis缓存

在这里插入图片描述
在这里插入图片描述

@Overridepublic Result queryById(Long id) {String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(shopJson)){// 3. 存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4. 不存在,根据id查询数据库Shop shop = getById(id);// 5. 不存在,写入redisif(shop == null){return Result.fail("店铺不存在!");}// 6. 存在,写入redisstringRedisTemplate.opsForValue().set(redisKey,JSONUtil.toJsonStr(shop));// 7. 返回return Result.ok(shop);}

店铺类型查询业务添加缓存练习题

@Overridepublic Result queryTypeList() {// 1. 从redis查询店铺类别缓存List<String> shopTypeRedisKey = stringRedisTemplate.opsForList().range(RedisConstants.CACHE_SHOP_TYPE_KEY,0,-1);// 2. 判断是否命中缓存if(!CollectionUtils.isEmpty(shopTypeRedisKey)){// 3. 存在,直接返回,即是命中缓存// 使用stream流将json集合转为List<ShopType> shopTypeList = shopTypeRedisKey.stream().map(item -> JSONUtil.toBean(item, ShopType.class)).sorted(Comparator.comparingInt(ShopType::getSort)).collect(Collectors.toList());// 返回缓存数据return Result.ok(shopTypeList);}// 4. 不存在,查询数据库List<ShopType> shopTypes = query().orderByAsc("sort").list();// 判断数据库中是否有数据if(CollectionUtils.isEmpty(shopTypes)){// 不存在则缓存一个空集合,解决缓存穿透stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_TYPE_KEY, Collections.emptyList().toString(),RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);return Result.fail("商品分类信息为空");}// 5. 数据存在,先写入redis,再返回// 使用stream流将bean集合转为json集合List<String> shopTypeCache = shopTypes.stream().sorted(Comparator.comparingInt(ShopType::getSort)).map(item -> JSONUtil.toJsonStr(item)).collect(Collectors.toList());stringRedisTemplate.opsForList().rightPushAll(RedisConstants.CACHE_SHOP_TYPE_KEY,shopTypeCache);stringRedisTemplate.expire(RedisConstants.CACHE_SHOP_TYPE_KEY,RedisConstants.CACHE_SHOP_TYPE_TTL, TimeUnit.MINUTES);// 6. 返回(按类别升序排序)return Result.ok(shopTypes);}

缓存更新策略

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
操作缓存和数据库的顺序,不论谁先进行都可能会有线程安全的问题
在这里插入图片描述

但方案二的发生可能性更小,所以更优
总结:
在这里插入图片描述

给查询商铺的缓存添加超时剔除和主动更新的策略

在这里插入图片描述
查询店铺:

  @Overridepublic Result queryById(Long id) {String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(shopJson)){// 3. 存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4. 不存在,根据id查询数据库Shop shop = getById(id);// 5. 不存在,返回错误if(shop == null){return Result.fail("店铺不存在!");}// 6. 存在,写入redisstringRedisTemplate.opsForValue().set(redisKey,JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);// 7. 返回return Result.ok(shop);}

修改店铺:

@Override@Transactionalpublic Result update(Shop shop) {Long id = shop.getId();if(id == null){return Result.fail("店铺id不能为空");}// 更新数据库,在删除缓存updateById(shop);// 删除缓存stringRedisTemplate.delete(RedisConstants.CACHE_SHOP_KEY + id);return Result.ok();}

缓存穿透

客户端请求的数据在缓存和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库

在这里插入图片描述

缓存空对象

在这里插入图片描述
可以设置一个TTL,解决内存消耗问题
可能存在短期不一致的问题,控制TTL的时间,可以一定程度的缓解这个问题。

布隆过滤

客户端个redis之间,在加一层过滤——布隆过滤器——哈希算法二进制位保存数据
布隆过滤器说如果不存在一定是不存在,但存在不一定是100% 的
在这里插入图片描述
先看一下之前查询商铺信息的业务流程
在这里插入图片描述
物品们采用方案一应该把空数据写入redis

在这里插入图片描述
在这里插入图片描述

缓存雪崩

在这里插入图片描述

解决方案

  • 给不同的key的TTL添加随机值——针对问题一
  • 利用redis集群提高服务的可用性——针对问题二
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

缓存击穿

在这里插入图片描述

解决方案

互斥锁和逻辑过期
在这里插入图片描述
在这里插入图片描述

基于互斥锁方式解决缓存击穿问题

在这里插入图片描述
获取锁:
- redis的setnx指令可以在key不存在的时候写,存在的时候不能写,就类似于互斥
释放锁:
- 删掉就行了
设置锁的时候要设置有效期,避免因为某种原因锁得不到释放

 @Overridepublic Result queryById(Long id) {// 缓存穿透
//        Shop shop = queryWithPassThrough(id);// 互斥锁解决缓存击穿Shop shop = queryWithMutex(id);if(shop == null){return Result.fail("店铺不存在!");}// 7. 返回return Result.ok(shop);}/*** 解决缓存击穿(互斥锁)的写法* @param id* @return*/public Shop queryWithMutex(Long id){String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(shopJson)){// 3. 存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}// 命中的是否是空值if(shopJson != null){// 返回一个错误信息return null;}//4. 开始实现缓存重建// 4.1 获取互斥锁String lockKey = "lock:shop:" + id;Shop shop = null;try{boolean isLock = tryLock(lockKey);// 4.2 判断是否获取成功if(!isLock){// 4.3 如果失败,则休眠并重试Thread.sleep(50);return queryWithMutex(id);}// 4.4 如果成功,根据id查询数据库shop = getById(id);// 模拟重建的延时——测试的时候打开
//            Thread.sleep(200);// 5. 不存在,返回错误if(shop == null){// 将空值写入redis——解决缓存穿透stringRedisTemplate.opsForValue().set(redisKey,"",RedisConstants.CACHE_NULL_TTL,TimeUnit.MINUTES);// 返回错误信息return null;}// 6. 存在,写入redisstringRedisTemplate.opsForValue().set(redisKey,JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e){throw new RuntimeException(e);}finally {// 释放互斥锁unLock(lockKey);}// 7. 返回return shop;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);  // 因为flag是封装类,而要求的返回值是基本数据类型,在返回的时候就会进行自动的拆箱,拆箱的时候会出现空指针}private void unLock(String key){stringRedisTemplate.delete(key);}

基于逻辑过期的方式解决缓存击穿问题

在这里插入图片描述

有个小问题,我们想要给存入redis的数据添加过期时间,但是我们的Shop实体类中又没有过期时间这个字段怎么办呢?
我们去给这个Shop实体添加过期时间字段可行吗?可行,但是对代码有侵入性,而且这个字段除了这里其他地方都用不到。
那怎么办?
我们可以声明一个RedisData的实体类,里面有一个过期时间的属性,让Shop继承这个实体类,Shop也就有了过期时间的属性了,但还是有一点点不好,还是需要修改源代码,需要修改Shop,有一定的侵入性,虽然也蛮好的。
还有一种方案:在RedisData中在声明一个Object的字段,把想要存储的数据放到Object中。

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

实际的项目肯定会有管理系统在后台点击,把热点数据提前缓存进redis,我们这里用一个单元测试完成这个功能。
先写一个缓存进redis的方法

    public void saveShop2Redis(Long id, Long expireSeconds){// 1. 查询店铺数据Shop shop = getById(id);// 2. 封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));///3.写入redisstringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));}

在编写一个单元测试

@SpringBootTest
class HmDianPingApplicationTests {@Autowiredprivate ShopServiceImpl shopService;@Testvoid testSaveShop() {shopService.saveShop2Redis(1L, 10L);}}

下面我们完成基于逻辑过期的方式解决缓存击穿的商铺查询的代码

// 使用线程池来开辟新线程private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);/*** 解决缓存击穿(逻辑过期)的写法* @param id* @return*/public Shop queryWithLogicalExpire(Long id){String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isBlank(shopJson)){// 3. 不存在,直接返回return null;}// 4. 命中需要判断过期时间,需要先把json反序列化位对象RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);JSONObject jsonData = (JSONObject) redisData.getData(); // 如果不强转就是一个Object,但本质上是JSONObject,所以先转成JSONObjectShop shop = JSONUtil.toBean(jsonData, Shop.class);LocalDateTime expireTime = redisData.getExpireTime();// 5. 判断是否过期if(expireTime.isAfter(LocalDateTime.now())){// 5.1 未过期,直接返回店铺信息return shop;}// 5.2 已过期,需要缓存重建// 6. 缓存重建// 6.1 获取互斥锁String lockKey = RedisConstants.LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2 判断是否获取锁成功if(isLock){//6.3成功 开启独立线程实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {// 重建缓存this.saveShop2Redis(id,20L);}catch (Exception e){} finally {// 释放锁unLock(lockKey);}});}// 6.4 返回过期的商铺信息return shop;}

缓存工具封装

在这里插入图片描述
把封装的代码放到CacheClient这个类中,并添加@Component注解,把这个bean交给Spring管理,封装的工具类如下:


@Slf4j
@Component
public class CacheClient {private final StringRedisTemplate stringRedisTemplate;// 用构造器注入public CacheClient(StringRedisTemplate stringRedisTemplate){this.stringRedisTemplate = stringRedisTemplate;}public void set(String key, Object value, Long time, TimeUnit unit){stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value),time,unit);}public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit){// 设置逻辑过期RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));// 写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));}public <R, ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){String redisKey = keyPrefix + id;// 1. 从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(json)){// 3. 存在,直接返回return JSONUtil.toBean(json, type);}// 命中的是否是空值if(json != null){// 返回一个错误信息return null;}// 4. 不存在,根据id查询数据库——我们哪知道去查哪个数据库,只能调用者告诉我们,——函数式编程R r = dbFallback.apply(id);// 5. 不存在,返回错误if(r == null){// 将空值写入redis——解决缓存穿透stringRedisTemplate.opsForValue().set(redisKey,"",RedisConstants.CACHE_NULL_TTL,TimeUnit.MINUTES);// 返回错误信息return null;}// 6. 存在,写入redisthis.set(redisKey, r, time, unit);// 7. 返回return r;}private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);public <R,ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){String redisKey = keyPrefix + id;// 1. 从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isBlank(json)){// 3. 不存在,直接返回return null;}// 4. 命中需要判断过期时间,需要先把json反序列化位对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);JSONObject jsonData = (JSONObject) redisData.getData(); // 如果不强转就是一个Object,但本质上是JSONObject,所以先转成JSONObjectR r = JSONUtil.toBean(jsonData, type);LocalDateTime expireTime = redisData.getExpireTime();// 5. 判断是否过期if(expireTime.isAfter(LocalDateTime.now())){// 5.1 未过期,直接返回店铺信息return r;}// 5.2 已过期,需要缓存重建// 6. 缓存重建// 6.1 获取互斥锁String lockKey = RedisConstants.LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2 判断是否获取锁成功if(isLock){//6.3成功 开启独立线程实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {// 重建缓存// 先查数据库R r1 = dbFallback.apply(id);// 写入redisthis.setWithLogicalExpire(redisKey, r1, time, unit);}catch (Exception e){} finally {// 释放锁unLock(lockKey);}});}// 6.4 返回过期的商铺信息return r;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);  // 因为flag是封装类,而要求的返回值是基本数据类型,在返回的时候就会进行自动的拆箱,拆箱的时候会出现空指针}private void unLock(String key){stringRedisTemplate.delete(key);}}

封装这个工具类,有很多的技巧要总结:

  1. 传递的参数和返回的数据类型要泛型
  2. 函数式编程:在封装queryWithPassThrough的时候,里面在redis查询不存在的时候,我们要去查询数据库,那查询数据库的代码,我们泛型传递的参数,调用哪个查询数据库的函数去查询数据库呢?这时要用函数式编程,把要用到的函数通过参数传递过来,有参数有返回值就用Function<ID, R> dbFallback,使用的时候直接R r = dbFallback.apply(id);即可,调用这个工具方法的时候把具体的查询函数作为参数传进去。

那这些工具类在调用的时候又该怎么调用呢?

  @Overridepublic Result queryById(Long id) {// 缓存穿透
//        Shop shop = cacheClient.queryWithPassThrough(RedisConstants.CACHE_SHOP_KEY, id, Shop.class, this::getById, RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);// 逻辑过期解决缓存击穿问题Shop shop = cacheClient.queryWithLogicalExpire(RedisConstants.CACHE_SHOP_KEY, id, Shop.class, this::getById, 20L, TimeUnit.SECONDS);if(shop == null){return Result.fail("店铺不存在!");}// 7. 返回return Result.ok(shop);}

那我们的缓存击穿想测试的话,还是得先用单元测试的方法,先往redis中写入点热点数据,现在就可以改进我们的单元测试代码


@SpringBootTest
class HmDianPingApplicationTests {@Autowiredprivate CacheClient cacheClient;@Testvoid testSaveShop() {Shop shop = shopService.getById(1L);cacheClient.setWithLogicalExpire(RedisConstants.CACHE_SHOP_KEY + 1L,shop,10L, TimeUnit.SECONDS);}
}

这篇关于黑马点评——商户查询缓存(P37店铺类型查询业务添加缓存练习题答案)redis缓存、更新、穿透、雪崩、击穿、工具封装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124547

相关文章

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件