黑马点评——商户查询缓存(P37店铺类型查询业务添加缓存练习题答案)redis缓存、更新、穿透、雪崩、击穿、工具封装

本文主要是介绍黑马点评——商户查询缓存(P37店铺类型查询业务添加缓存练习题答案)redis缓存、更新、穿透、雪崩、击穿、工具封装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 什么是缓存?
  • 添加Redis缓存
    • 店铺类型查询业务添加缓存练习题
  • 缓存更新策略
    • 给查询商铺的缓存添加超时剔除和主动更新的策略
  • 缓存穿透
    • 缓存空对象
    • 布隆过滤
  • 缓存雪崩
    • 解决方案
  • 缓存击穿
    • 解决方案
    • 基于互斥锁方式解决缓存击穿问题
    • 基于逻辑过期的方式解决缓存击穿问题
  • 缓存工具封装

什么是缓存?

在这里插入图片描述

缓存也要考虑成本的问题,不是随便用的
在这里插入图片描述

添加Redis缓存

在这里插入图片描述
在这里插入图片描述

@Overridepublic Result queryById(Long id) {String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(shopJson)){// 3. 存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4. 不存在,根据id查询数据库Shop shop = getById(id);// 5. 不存在,写入redisif(shop == null){return Result.fail("店铺不存在!");}// 6. 存在,写入redisstringRedisTemplate.opsForValue().set(redisKey,JSONUtil.toJsonStr(shop));// 7. 返回return Result.ok(shop);}

店铺类型查询业务添加缓存练习题

@Overridepublic Result queryTypeList() {// 1. 从redis查询店铺类别缓存List<String> shopTypeRedisKey = stringRedisTemplate.opsForList().range(RedisConstants.CACHE_SHOP_TYPE_KEY,0,-1);// 2. 判断是否命中缓存if(!CollectionUtils.isEmpty(shopTypeRedisKey)){// 3. 存在,直接返回,即是命中缓存// 使用stream流将json集合转为List<ShopType> shopTypeList = shopTypeRedisKey.stream().map(item -> JSONUtil.toBean(item, ShopType.class)).sorted(Comparator.comparingInt(ShopType::getSort)).collect(Collectors.toList());// 返回缓存数据return Result.ok(shopTypeList);}// 4. 不存在,查询数据库List<ShopType> shopTypes = query().orderByAsc("sort").list();// 判断数据库中是否有数据if(CollectionUtils.isEmpty(shopTypes)){// 不存在则缓存一个空集合,解决缓存穿透stringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_TYPE_KEY, Collections.emptyList().toString(),RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);return Result.fail("商品分类信息为空");}// 5. 数据存在,先写入redis,再返回// 使用stream流将bean集合转为json集合List<String> shopTypeCache = shopTypes.stream().sorted(Comparator.comparingInt(ShopType::getSort)).map(item -> JSONUtil.toJsonStr(item)).collect(Collectors.toList());stringRedisTemplate.opsForList().rightPushAll(RedisConstants.CACHE_SHOP_TYPE_KEY,shopTypeCache);stringRedisTemplate.expire(RedisConstants.CACHE_SHOP_TYPE_KEY,RedisConstants.CACHE_SHOP_TYPE_TTL, TimeUnit.MINUTES);// 6. 返回(按类别升序排序)return Result.ok(shopTypes);}

缓存更新策略

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
操作缓存和数据库的顺序,不论谁先进行都可能会有线程安全的问题
在这里插入图片描述

但方案二的发生可能性更小,所以更优
总结:
在这里插入图片描述

给查询商铺的缓存添加超时剔除和主动更新的策略

在这里插入图片描述
查询店铺:

  @Overridepublic Result queryById(Long id) {String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(shopJson)){// 3. 存在,直接返回Shop shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 4. 不存在,根据id查询数据库Shop shop = getById(id);// 5. 不存在,返回错误if(shop == null){return Result.fail("店铺不存在!");}// 6. 存在,写入redisstringRedisTemplate.opsForValue().set(redisKey,JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);// 7. 返回return Result.ok(shop);}

修改店铺:

@Override@Transactionalpublic Result update(Shop shop) {Long id = shop.getId();if(id == null){return Result.fail("店铺id不能为空");}// 更新数据库,在删除缓存updateById(shop);// 删除缓存stringRedisTemplate.delete(RedisConstants.CACHE_SHOP_KEY + id);return Result.ok();}

缓存穿透

客户端请求的数据在缓存和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库

在这里插入图片描述

缓存空对象

在这里插入图片描述
可以设置一个TTL,解决内存消耗问题
可能存在短期不一致的问题,控制TTL的时间,可以一定程度的缓解这个问题。

布隆过滤

客户端个redis之间,在加一层过滤——布隆过滤器——哈希算法二进制位保存数据
布隆过滤器说如果不存在一定是不存在,但存在不一定是100% 的
在这里插入图片描述
先看一下之前查询商铺信息的业务流程
在这里插入图片描述
物品们采用方案一应该把空数据写入redis

在这里插入图片描述
在这里插入图片描述

缓存雪崩

在这里插入图片描述

解决方案

  • 给不同的key的TTL添加随机值——针对问题一
  • 利用redis集群提高服务的可用性——针对问题二
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

缓存击穿

在这里插入图片描述

解决方案

互斥锁和逻辑过期
在这里插入图片描述
在这里插入图片描述

基于互斥锁方式解决缓存击穿问题

在这里插入图片描述
获取锁:
- redis的setnx指令可以在key不存在的时候写,存在的时候不能写,就类似于互斥
释放锁:
- 删掉就行了
设置锁的时候要设置有效期,避免因为某种原因锁得不到释放

 @Overridepublic Result queryById(Long id) {// 缓存穿透
//        Shop shop = queryWithPassThrough(id);// 互斥锁解决缓存击穿Shop shop = queryWithMutex(id);if(shop == null){return Result.fail("店铺不存在!");}// 7. 返回return Result.ok(shop);}/*** 解决缓存击穿(互斥锁)的写法* @param id* @return*/public Shop queryWithMutex(Long id){String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(shopJson)){// 3. 存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}// 命中的是否是空值if(shopJson != null){// 返回一个错误信息return null;}//4. 开始实现缓存重建// 4.1 获取互斥锁String lockKey = "lock:shop:" + id;Shop shop = null;try{boolean isLock = tryLock(lockKey);// 4.2 判断是否获取成功if(!isLock){// 4.3 如果失败,则休眠并重试Thread.sleep(50);return queryWithMutex(id);}// 4.4 如果成功,根据id查询数据库shop = getById(id);// 模拟重建的延时——测试的时候打开
//            Thread.sleep(200);// 5. 不存在,返回错误if(shop == null){// 将空值写入redis——解决缓存穿透stringRedisTemplate.opsForValue().set(redisKey,"",RedisConstants.CACHE_NULL_TTL,TimeUnit.MINUTES);// 返回错误信息return null;}// 6. 存在,写入redisstringRedisTemplate.opsForValue().set(redisKey,JSONUtil.toJsonStr(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);} catch (InterruptedException e){throw new RuntimeException(e);}finally {// 释放互斥锁unLock(lockKey);}// 7. 返回return shop;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);  // 因为flag是封装类,而要求的返回值是基本数据类型,在返回的时候就会进行自动的拆箱,拆箱的时候会出现空指针}private void unLock(String key){stringRedisTemplate.delete(key);}

基于逻辑过期的方式解决缓存击穿问题

在这里插入图片描述

有个小问题,我们想要给存入redis的数据添加过期时间,但是我们的Shop实体类中又没有过期时间这个字段怎么办呢?
我们去给这个Shop实体添加过期时间字段可行吗?可行,但是对代码有侵入性,而且这个字段除了这里其他地方都用不到。
那怎么办?
我们可以声明一个RedisData的实体类,里面有一个过期时间的属性,让Shop继承这个实体类,Shop也就有了过期时间的属性了,但还是有一点点不好,还是需要修改源代码,需要修改Shop,有一定的侵入性,虽然也蛮好的。
还有一种方案:在RedisData中在声明一个Object的字段,把想要存储的数据放到Object中。

@Data
public class RedisData {private LocalDateTime expireTime;private Object data;
}

实际的项目肯定会有管理系统在后台点击,把热点数据提前缓存进redis,我们这里用一个单元测试完成这个功能。
先写一个缓存进redis的方法

    public void saveShop2Redis(Long id, Long expireSeconds){// 1. 查询店铺数据Shop shop = getById(id);// 2. 封装逻辑过期时间RedisData redisData = new RedisData();redisData.setData(shop);redisData.setExpireTime(LocalDateTime.now().plusSeconds(expireSeconds));///3.写入redisstringRedisTemplate.opsForValue().set(RedisConstants.CACHE_SHOP_KEY + id, JSONUtil.toJsonStr(redisData));}

在编写一个单元测试

@SpringBootTest
class HmDianPingApplicationTests {@Autowiredprivate ShopServiceImpl shopService;@Testvoid testSaveShop() {shopService.saveShop2Redis(1L, 10L);}}

下面我们完成基于逻辑过期的方式解决缓存击穿的商铺查询的代码

// 使用线程池来开辟新线程private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);/*** 解决缓存击穿(逻辑过期)的写法* @param id* @return*/public Shop queryWithLogicalExpire(Long id){String redisKey = RedisConstants.CACHE_SHOP_KEY + id;// 1. 从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isBlank(shopJson)){// 3. 不存在,直接返回return null;}// 4. 命中需要判断过期时间,需要先把json反序列化位对象RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);JSONObject jsonData = (JSONObject) redisData.getData(); // 如果不强转就是一个Object,但本质上是JSONObject,所以先转成JSONObjectShop shop = JSONUtil.toBean(jsonData, Shop.class);LocalDateTime expireTime = redisData.getExpireTime();// 5. 判断是否过期if(expireTime.isAfter(LocalDateTime.now())){// 5.1 未过期,直接返回店铺信息return shop;}// 5.2 已过期,需要缓存重建// 6. 缓存重建// 6.1 获取互斥锁String lockKey = RedisConstants.LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2 判断是否获取锁成功if(isLock){//6.3成功 开启独立线程实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {// 重建缓存this.saveShop2Redis(id,20L);}catch (Exception e){} finally {// 释放锁unLock(lockKey);}});}// 6.4 返回过期的商铺信息return shop;}

缓存工具封装

在这里插入图片描述
把封装的代码放到CacheClient这个类中,并添加@Component注解,把这个bean交给Spring管理,封装的工具类如下:


@Slf4j
@Component
public class CacheClient {private final StringRedisTemplate stringRedisTemplate;// 用构造器注入public CacheClient(StringRedisTemplate stringRedisTemplate){this.stringRedisTemplate = stringRedisTemplate;}public void set(String key, Object value, Long time, TimeUnit unit){stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value),time,unit);}public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit){// 设置逻辑过期RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));// 写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));}public <R, ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){String redisKey = keyPrefix + id;// 1. 从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isNotBlank(json)){// 3. 存在,直接返回return JSONUtil.toBean(json, type);}// 命中的是否是空值if(json != null){// 返回一个错误信息return null;}// 4. 不存在,根据id查询数据库——我们哪知道去查哪个数据库,只能调用者告诉我们,——函数式编程R r = dbFallback.apply(id);// 5. 不存在,返回错误if(r == null){// 将空值写入redis——解决缓存穿透stringRedisTemplate.opsForValue().set(redisKey,"",RedisConstants.CACHE_NULL_TTL,TimeUnit.MINUTES);// 返回错误信息return null;}// 6. 存在,写入redisthis.set(redisKey, r, time, unit);// 7. 返回return r;}private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);public <R,ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){String redisKey = keyPrefix + id;// 1. 从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(redisKey);// 2. 判读是否存在if(StrUtil.isBlank(json)){// 3. 不存在,直接返回return null;}// 4. 命中需要判断过期时间,需要先把json反序列化位对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);JSONObject jsonData = (JSONObject) redisData.getData(); // 如果不强转就是一个Object,但本质上是JSONObject,所以先转成JSONObjectR r = JSONUtil.toBean(jsonData, type);LocalDateTime expireTime = redisData.getExpireTime();// 5. 判断是否过期if(expireTime.isAfter(LocalDateTime.now())){// 5.1 未过期,直接返回店铺信息return r;}// 5.2 已过期,需要缓存重建// 6. 缓存重建// 6.1 获取互斥锁String lockKey = RedisConstants.LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2 判断是否获取锁成功if(isLock){//6.3成功 开启独立线程实现缓存重建CACHE_REBUILD_EXECUTOR.submit(()->{try {// 重建缓存// 先查数据库R r1 = dbFallback.apply(id);// 写入redisthis.setWithLogicalExpire(redisKey, r1, time, unit);}catch (Exception e){} finally {// 释放锁unLock(lockKey);}});}// 6.4 返回过期的商铺信息return r;}private boolean tryLock(String key){Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);  // 因为flag是封装类,而要求的返回值是基本数据类型,在返回的时候就会进行自动的拆箱,拆箱的时候会出现空指针}private void unLock(String key){stringRedisTemplate.delete(key);}}

封装这个工具类,有很多的技巧要总结:

  1. 传递的参数和返回的数据类型要泛型
  2. 函数式编程:在封装queryWithPassThrough的时候,里面在redis查询不存在的时候,我们要去查询数据库,那查询数据库的代码,我们泛型传递的参数,调用哪个查询数据库的函数去查询数据库呢?这时要用函数式编程,把要用到的函数通过参数传递过来,有参数有返回值就用Function<ID, R> dbFallback,使用的时候直接R r = dbFallback.apply(id);即可,调用这个工具方法的时候把具体的查询函数作为参数传进去。

那这些工具类在调用的时候又该怎么调用呢?

  @Overridepublic Result queryById(Long id) {// 缓存穿透
//        Shop shop = cacheClient.queryWithPassThrough(RedisConstants.CACHE_SHOP_KEY, id, Shop.class, this::getById, RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);// 逻辑过期解决缓存击穿问题Shop shop = cacheClient.queryWithLogicalExpire(RedisConstants.CACHE_SHOP_KEY, id, Shop.class, this::getById, 20L, TimeUnit.SECONDS);if(shop == null){return Result.fail("店铺不存在!");}// 7. 返回return Result.ok(shop);}

那我们的缓存击穿想测试的话,还是得先用单元测试的方法,先往redis中写入点热点数据,现在就可以改进我们的单元测试代码


@SpringBootTest
class HmDianPingApplicationTests {@Autowiredprivate CacheClient cacheClient;@Testvoid testSaveShop() {Shop shop = shopService.getById(1L);cacheClient.setWithLogicalExpire(RedisConstants.CACHE_SHOP_KEY + 1L,shop,10L, TimeUnit.SECONDS);}
}

这篇关于黑马点评——商户查询缓存(P37店铺类型查询业务添加缓存练习题答案)redis缓存、更新、穿透、雪崩、击穿、工具封装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124547

相关文章

MySQL中between and的基本用法、范围查询示例详解

《MySQL中betweenand的基本用法、范围查询示例详解》BETWEENAND操作符在MySQL中用于选择在两个值之间的数据,包括边界值,它支持数值和日期类型,示例展示了如何使用BETWEEN... 目录一、between and语法二、使用示例2.1、betwphpeen and数值查询2.2、be

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

C# WebAPI的几种返回类型方式

《C#WebAPI的几种返回类型方式》本文主要介绍了C#WebAPI的几种返回类型方式,包括直接返回指定类型、返回IActionResult实例和返回ActionResult,文中通过示例代码介绍的... 目录创建 Controller 和 Model 类在 Action 中返回 指定类型在 Action

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

MySQL基本表查询操作汇总之单表查询+多表操作大全

《MySQL基本表查询操作汇总之单表查询+多表操作大全》本文全面介绍了MySQL单表查询与多表操作的关键技术,包括基本语法、高级查询、表别名使用、多表连接及子查询等,并提供了丰富的实例,感兴趣的朋友跟... 目录一、单表查询整合(一)通用模版展示(二)举例说明(三)注意事项(四)Mapper简单举例简单查询

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Redis 命令详解与实战案例

《Redis命令详解与实战案例》本文详细介绍了Redis的基础知识、核心数据结构与命令、高级功能与命令、最佳实践与性能优化,以及实战应用场景,通过实战案例,展示了如何使用Redis构建高性能应用系统... 目录Redis 命令详解与实战案例一、Redis 基础介绍二、Redis 核心数据结构与命令1. 字符

SpringBoot18 redis的配置方法

《SpringBoot18redis的配置方法》本文介绍在SpringBoot项目中集成和使用Redis的方法,包括添加依赖、配置文件、自定义序列化方式、使用方式、实际使用示例、常见操作总结以及注意... 目录一、Spring Boot 中使用 Redis1. 添加依赖2. 配置文件3. Redis 配置类

springboot+mybatis一对多查询+懒加载实例

《springboot+mybatis一对多查询+懒加载实例》文章介绍了如何在SpringBoot和MyBatis中实现一对多查询的懒加载,通过配置MyBatis的`fetchType`属性,可以全局... 目录springboot+myBATis一对多查询+懒加载parent相关代码child 相关代码懒