yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制

本文主要是介绍yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

在计算机视觉和深度学习项目中,数据增强是一种常用的技术,通过对原始图像进行多种变换,可以增加数据集的多样性,从而提高模型的泛化能力。本文将介绍如何使用 Python 和 OpenCV 实现图像的亮度增强,并将增强后的图像与对应的注释文件批量复制到新目录中。

项目背景

假设你有一个数据集,包含若干图像及其对应的 XML 注释文件和标签文件。在模型训练前,你希望对这些图像进行亮度增强,并生成新的图像及其对应的注释文件和标签文件。本教程将指导你如何编写一个 Python 脚本,实现此功能。

train目录如下:

在这里插入图片描述
生成的augmented_data如下:

在这里插入图片描述

代码实现

1. 图像亮度调整函数

首先,我们需要编写一个函数,来调整图像的亮度。此处我们使用 HSV 色彩空间的 V(亮度)通道进行调整。

import cv2
import numpy as npdef adjust_brightness(im, vgain):hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)hue, sat, val = cv2.split(hsv)val = np.clip(val * vgain, 0, 255).astype(np.uint8)enhanced_hsv = cv2.merge((hue, sat, val))brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)return brightened_img

2. 创建输出目录

在进行文件操作前,我们需要为增强后的文件创建一个新的输出目录。

import osdef create_output_folders(base_folder):new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")output_folders = {"images": os.path.join(new_base_folder, "images"),"annotations": os.path.join(new_base_folder, "annotations"),"labels": os.path.join(new_base_folder, "labels")}for folder in output_folders.values():os.makedirs(folder, exist_ok=True)return output_folders

3. 文件复制函数

为了复制原始图像和对应的注释文件,我们编写一个通用的文件复制函数。该函数可以根据需要在文件名后添加后缀。

import shutildef copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):base_filename, ext = os.path.splitext(os.path.basename(src_path))if preserve_ext:new_filename = f"{base_filename}{filename_suffix}{ext}"else:new_filename = f"{base_filename}{filename_suffix}"dst_path = os.path.join(dst_folder, new_filename)shutil.copy(src_path, dst_path)return dst_path

4. 图像增强与文件复制

该函数实现了图像的亮度增强,同时将增强后的图像和对应的注释文件保存到新的目录中。

def augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5)):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),"annotations": os.path.join(base_folder, "annotations", f"{base_filename}.xml"),"labels": os.path.join(base_folder, "labels", f"{base_filename}.txt")}# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始文件for key in file_paths:copy_file(file_paths[key], output_folders[key], "", preserve_ext=True)# 确保增强结果不重复unique_vgains = set()while len(unique_vgains) < num_augmentations:vgain = np.random.uniform(*vgain_range)if vgain not in unique_vgains:unique_vgains.add(vgain)brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)for key in file_paths:filename_suffix = f"_enhanced_{len(unique_vgains)}"output_path = copy_file(file_paths[key], output_folders[key], filename_suffix, preserve_ext=True)if key == "images":cv2.imwrite(output_path, brightened_img)print(f"Saved: {output_path}")else:print(f"Copied {key}: {output_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")

5. 处理整个目录

最后,我们编写一个函数,用于处理指定目录中的所有图像文件,并对每张图像进行增强。

def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5)):images_folder = os.path.join(base_folder, "images")for image_filename in os.listdir(images_folder):if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range)

6. 运行脚本

你可以通过以下代码来运行整个图像增强与文件复制过程:

# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_10_29\train"
process_all_images_in_folder(base_folder)

7.整体代码

import cv2
import numpy as np
import os
import shutildef adjust_brightness(im, vgain):hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)hue, sat, val = cv2.split(hsv)val = np.clip(val * vgain, 0, 255).astype(np.uint8)enhanced_hsv = cv2.merge((hue, sat, val))brightened_img = cv2.cvtColor(enhanced_hsv, cv2.COLOR_HSV2BGR)return brightened_imgdef create_output_folders(base_folder):new_base_folder = os.path.join(os.path.dirname(base_folder), "augmented_data")output_folders = {"images": os.path.join(new_base_folder, "images"),"annotations": os.path.join(new_base_folder, "annotations"),"labels": os.path.join(new_base_folder, "labels")}for folder in output_folders.values():os.makedirs(folder, exist_ok=True)return output_foldersdef copy_file(src_path, dst_folder, filename_suffix, preserve_ext=True):base_filename, ext = os.path.splitext(os.path.basename(src_path))if preserve_ext:new_filename = f"{base_filename}{filename_suffix}{ext}"else:new_filename = f"{base_filename}{filename_suffix}"dst_path = os.path.join(dst_folder, new_filename)shutil.copy(src_path, dst_path)return dst_pathdef augment_and_copy_files(base_folder, image_filename, num_augmentations=2, vgain_range=(1, 1.5)):base_filename, image_ext = os.path.splitext(image_filename)# 构建原始文件路径file_paths = {"images": os.path.join(base_folder, "images", image_filename),"annotations": os.path.join(base_folder, "annotations", f"{base_filename}.xml"),"labels": os.path.join(base_folder, "labels", f"{base_filename}.txt")}# 创建输出文件夹output_folders = create_output_folders(base_folder)# 复制原始文件for key in file_paths:copy_file(file_paths[key], output_folders[key], "", preserve_ext=True)# 确保增强结果不重复unique_vgains = set()while len(unique_vgains) < num_augmentations:vgain = np.random.uniform(*vgain_range)if vgain not in unique_vgains:unique_vgains.add(vgain)brightened_img = adjust_brightness(cv2.imread(file_paths["images"]), vgain)for key in file_paths:filename_suffix = f"_enhanced_{len(unique_vgains)}"output_path = copy_file(file_paths[key], output_folders[key], filename_suffix, preserve_ext=True)if key == "images":cv2.imwrite(output_path, brightened_img)print(f"Saved: {output_path}")else:print(f"Copied {key}: {output_path}")print(f"All unique images and their annotations for {image_filename} have been enhanced and saved!")def process_all_images_in_folder(base_folder, num_augmentations=2, vgain_range=(1, 1.5)):images_folder = os.path.join(base_folder, "images")for image_filename in os.listdir(images_folder):if image_filename.lower().endswith(('.bmp', '.jpg', '.jpeg', '.png')):augment_and_copy_files(base_folder, image_filename, num_augmentations, vgain_range)# 使用示例
base_folder = r"C:\Users\linds\Desktop\fsdownload\upgrade_algo_so\data_res_2024_08_31_10_29\train"
process_all_images_in_folder(base_folder)

这篇关于yolo训练策略--使用 Python 和 OpenCV 进行图像亮度增强与批量文件复制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1124530

相关文章

Java如何从Redis中批量读取数据

《Java如何从Redis中批量读取数据》:本文主要介绍Java如何从Redis中批量读取数据的情况,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一.背景概述二.分析与实现三.发现问题与屡次改进3.1.QPS过高而且波动很大3.2.程序中断,抛异常3.3.内存消

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

SpringBoot使用ffmpeg实现视频压缩

《SpringBoot使用ffmpeg实现视频压缩》FFmpeg是一个开源的跨平台多媒体处理工具集,用于录制,转换,编辑和流式传输音频和视频,本文将使用ffmpeg实现视频压缩功能,有需要的可以参考... 目录核心功能1.格式转换2.编解码3.音视频处理4.流媒体支持5.滤镜(Filter)安装配置linu

Redis中的Lettuce使用详解

《Redis中的Lettuce使用详解》Lettuce是一个高级的、线程安全的Redis客户端,用于与Redis数据库交互,Lettuce是一个功能强大、使用方便的Redis客户端,适用于各种规模的J... 目录简介特点连接池连接池特点连接池管理连接池优势连接池配置参数监控常用监控工具通过JMX监控通过Pr

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Linux系统之stress-ng测压工具的使用

《Linux系统之stress-ng测压工具的使用》:本文主要介绍Linux系统之stress-ng测压工具的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、理论1.stress工具简介与安装2.语法及参数3.具体安装二、实验1.运行8 cpu, 4 fo

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by