【机器学习】K近邻(K-Nearest Neighbors,简称KNN)的基本概念以及消极方法和积极方法的区别

本文主要是介绍【机器学习】K近邻(K-Nearest Neighbors,简称KNN)的基本概念以及消极方法和积极方法的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

K近邻(K-Nearest Neighbors,简称KNN)算法是一种基础的机器学习方法,属于监督学习范畴

文章目录

  • 引言
  • 一、K近邻(K-Nearest Neighbors,简称KNN)
    • 1.1 原理详述
      • 1.1.1 距离度量
      • 1.1.2 选择k值
      • 1.1.3 投票机制
    • 1.2 实现步骤
    • 1.3 参数选择
    • 1.4 应用场景
    • 1.5 优缺点
      • 1.5.1 优点
      • 1.5.2 缺点
    • 1.6 k-近邻代码实例
  • 三、如何选择k值
    • 3.1 交叉验证
    • 3.2 留出法(Hold-out Method)
    • 3.3 学习曲线
    • 3.4 超参数优化技术
    • 3.5 Elbow Method
    • 3.6 注意事项
  • 四、消极方法和积极方法的区别
    • 4.1 消极方法(Passive Methods)
      • 4.1.1 原理:
      • 4.1.2 性能上的优缺点:
    • 4.2 积极方法(Active Methods)
      • 4.2.1 原理:
      • 4.2.2 性能上的优缺点:
    • 4.3 综合考虑

在这里插入图片描述

一、K近邻(K-Nearest Neighbors,简称KNN)

K近邻的核心思想是,如果一个样本在特征空间中的k个最近邻大多数属于某一个类别,那么该样本也属于这个类别。KNN算法既可以用于分类问题,也可以用于回归问题

1.1 原理详述

1.1.1 距离度量

KNN算法首先需要计算新样本与已有数据集中每个样本的距离。距离度量可以是欧氏距离、曼哈顿距离、汉明距离等。以下是几种常见的距离计算公式:

  • 欧氏距离:对于两个n维向量 A A A B B B,其欧氏距离为
    d ( A , B ) = ∑ i = 1 n ( A i − B i ) 2 d(A, B) = \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2} d(A,B)=i=1n(AiBi)2
  • 曼哈顿距离:其公式为
    d ( A , B ) = ∑ i = 1 n ∣ A i − B i ∣ d(A, B) = \sum_{i=1}^{n} |A_i - B_i| d(A,B)=i=1nAiBi
  • 汉明距离:通常用于布尔值向量,其公式为
    d ( A , B ) = ∑ i = 1 n δ ( A i , B i ) d(A, B) = \sum_{i=1}^{n} \delta(A_i, B_i) d(A,B)=i=1nδ(Ai,Bi)
    其中 δ ( x , y ) \delta(x, y) δ(x,y)是指示函数,当 x ≠ y x \neq y x=y时为1,否则为0

1.1.2 选择k值

k值的选择对KNN算法的性能有重要影响。较小的k值意味着模型对噪声更敏感,而较大的k值可能导致模型对输入数据的特征不敏感

1.1.3 投票机制

对于分类问题,KNN算法通常采用“多数表决”规则,即一个新样本被分配到k个最近邻中最常见的类。如果存在多个类具有相同数量的最近邻,则可以随机选择一个类,或者基于距离加权投票

1.2 实现步骤

  1. 数据预处理:包括特征缩放和归一化,以确保所有特征对距离计算有相同的影响
  2. 选择k值:通过交叉验证等方法选择最优的k值
  3. 训练模型:KNN算法实际上没有显式的训练过程,它只是在预测时计算新样本与训练数据的距离
  4. 预测:对于一个新的样本,计算它与训练集中所有样本的距离,选择最近的k个样本,并根据这些样本的标签进行投票

1.3 参数选择

  • k值:如前所述,k值的选择对算法性能有很大影响。通常通过交叉验证来选择最优k值
  • 距离度量:根据数据的特性选择合适的距离度量方法

1.4 应用场景

  • 文本分类:如垃圾邮件检测
  • 图像识别:如手写数字识别
  • 推荐系统:通过用户之间的相似度来推荐商品或服务
  • 异常检测:识别与大多数数据差异较大的异常点

1.5 优缺点

1.5.1 优点

  • 算法简单,易于理解
  • 不需要建立模型,因此训练时间几乎为零
  • 可以用于分类和回归问题

1.5.2 缺点

  • 计算量大,特别是对于大数据集
  • 对噪声敏感,尤其是当k值较小时
  • 需要大量的内存存储所有训练数据

1.6 k-近邻代码实例

以下是使用Python和Scikit-learn库实现的K近邻算法的完整代码,该代码使用了鸢尾花数据集:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 数据集分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 创建KNN分类器实例并训练
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
# 进行预测
y_pred = knn.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

代码解释:

  • 首先加载了鸢尾花数据集
  • 然后将其分为训练集和测试集
  • 接着对特征进行了标准化处理,以消除不同特征之间的量纲影响
  • 之后创建了一个K近邻分类器实例,并使用训练集进行了训练
  • 最后在测试集上进行了预测,并计算了模型的准确率
  • 在这个例子中,模型的准确率为1.0,即100%

三、如何选择k值

选择最优的k值是K近邻算法中的一个关键步骤,因为它直接影响到模型的性能。以下是一些常用的方法来确定最优的k值:

3.1 交叉验证

交叉验证是一种常用的方法来评估模型的泛化能力。以下是一个使用交叉验证来选择最优k值的步骤:

  1. 分割数据集:将数据集分割成训练集和验证集
  2. 循环遍历k值:对于每个可能的k值,使用训练集来训练模型,并在验证集上进行验证
  3. 评估性能:计算每个k值对应的验证集上的错误率或准确率
  4. 选择最优k值:选择错误率最低或准确率最高的k值

3.2 留出法(Hold-out Method)

与交叉验证类似,但是只将数据集分割一次:

  1. 分割数据集:将数据集分割成较大的训练集和较小的测试集
  2. 训练和测试:对于每个k值,使用训练集训练模型,并在测试集上进行测试
  3. 选择最优k值:根据测试集上的性能选择最优k值

3.3 学习曲线

通过绘制学习曲线,可以观察到随着k值的增加,模型在训练集和验证集上的性能如何变化:

  1. 训练和验证:对于不同的k值,绘制模型在训练集和验证集上的准确率
  2. 观察曲线:选择在验证集上准确率最高且训练集和验证集准确率差距最小的k值

3.4 超参数优化技术

使用如网格搜索(Grid Search)或随机搜索(Random Search)等超参数优化技术来搜索最优k值

3.5 Elbow Method

这是一种直观的方法,通过观察随着k值增加,模型误差的变化情况来确定k值:

  1. 计算误差:对于不同的k值,计算模型在验证集上的误差(例如,分类错误率)
  2. 绘制图表:将k值和对应的误差绘制成图表
  3. 寻找“肘部”:找到图表中误差开始明显减少的点,这个点通常被称为“肘部”,对应的k值就是最优k值

3.6 注意事项

  • 过小的k值可能导致模型对噪声敏感,过大的k值可能导致模型对输入数据的特征不敏感
  • 在实际应用中,k值通常选择为小于训练样本数的平方根
  • 选择最优k值时,应考虑到计算成本,特别是在处理大型数据集时

四、消极方法和积极方法的区别

在机器学习和数据挖掘领域,消极方法和积极方法通常是指处理缺失值的不同策略。这两种方法各有其原理和优缺点

4.1 消极方法(Passive Methods)

消极方法不直接处理缺失值,而是简单地忽略含有缺失值的样本或特征。这种方法的原理是假设缺失值对模型的影响很小,或者可以通过其他方法(如特征选择、数据清洗等)来减轻其影响

4.1.1 原理:

  • 忽略样本:直接从数据集中移除含有缺失值的样本
  • 忽略特征:在某些情况下,可以忽略含有缺失值的特征

4.1.2 性能上的优缺点:

  • 优点:简单易行,计算成本低
  • 缺点:可能导致数据集规模减小,从而影响模型的性能;同时,缺失值的存在可能是数据集中的重要信息,忽略它们可能会导致模型的准确性下降

4.2 积极方法(Active Methods)

积极方法试图通过某种方式估计或填充缺失值,以保留完整的数据集。这种方法的原理是利用现有数据来推断缺失值,从而保持数据的完整性

4.2.1 原理:

  • 插值法:使用相邻或相似数据点的值来估计缺失值。例如,使用线性插值、样条插值等
  • 基于模型的方法:使用机器学习模型(如K近邻、决策树、支持向量机等)来预测缺失值

4.2.2 性能上的优缺点:

  • 优点:保留了完整的数据集,可以更好地利用数据中的信息
  • 缺点:计算成本较高,且填充方法的选择会影响模型的性能。如果填充方法不合适,可能会引入额外的噪声,降低模型的准确性

4.3 综合考虑

在实际应用中,选择消极方法还是积极方法取决于具体问题、数据集的特性以及计算资源的限制

  • 对于大规模数据集,积极方法可能更合适,因为它可以保留更多的信息
  • 对于计算资源有限或缺失值较少的情况,消极方法可能更加实用

在实际操作中,还可以结合使用这两种方法,例如,先使用消极方法删除部分缺失值严重的样本,然后使用积极方法处理剩余的缺失值。这样可以充分利用数据中的信息,同时降低计算成本

这篇关于【机器学习】K近邻(K-Nearest Neighbors,简称KNN)的基本概念以及消极方法和积极方法的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124214

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro