【机器学习】K近邻(K-Nearest Neighbors,简称KNN)的基本概念以及消极方法和积极方法的区别

本文主要是介绍【机器学习】K近邻(K-Nearest Neighbors,简称KNN)的基本概念以及消极方法和积极方法的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

K近邻(K-Nearest Neighbors,简称KNN)算法是一种基础的机器学习方法,属于监督学习范畴

文章目录

  • 引言
  • 一、K近邻(K-Nearest Neighbors,简称KNN)
    • 1.1 原理详述
      • 1.1.1 距离度量
      • 1.1.2 选择k值
      • 1.1.3 投票机制
    • 1.2 实现步骤
    • 1.3 参数选择
    • 1.4 应用场景
    • 1.5 优缺点
      • 1.5.1 优点
      • 1.5.2 缺点
    • 1.6 k-近邻代码实例
  • 三、如何选择k值
    • 3.1 交叉验证
    • 3.2 留出法(Hold-out Method)
    • 3.3 学习曲线
    • 3.4 超参数优化技术
    • 3.5 Elbow Method
    • 3.6 注意事项
  • 四、消极方法和积极方法的区别
    • 4.1 消极方法(Passive Methods)
      • 4.1.1 原理:
      • 4.1.2 性能上的优缺点:
    • 4.2 积极方法(Active Methods)
      • 4.2.1 原理:
      • 4.2.2 性能上的优缺点:
    • 4.3 综合考虑

在这里插入图片描述

一、K近邻(K-Nearest Neighbors,简称KNN)

K近邻的核心思想是,如果一个样本在特征空间中的k个最近邻大多数属于某一个类别,那么该样本也属于这个类别。KNN算法既可以用于分类问题,也可以用于回归问题

1.1 原理详述

1.1.1 距离度量

KNN算法首先需要计算新样本与已有数据集中每个样本的距离。距离度量可以是欧氏距离、曼哈顿距离、汉明距离等。以下是几种常见的距离计算公式:

  • 欧氏距离:对于两个n维向量 A A A B B B,其欧氏距离为
    d ( A , B ) = ∑ i = 1 n ( A i − B i ) 2 d(A, B) = \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2} d(A,B)=i=1n(AiBi)2
  • 曼哈顿距离:其公式为
    d ( A , B ) = ∑ i = 1 n ∣ A i − B i ∣ d(A, B) = \sum_{i=1}^{n} |A_i - B_i| d(A,B)=i=1nAiBi
  • 汉明距离:通常用于布尔值向量,其公式为
    d ( A , B ) = ∑ i = 1 n δ ( A i , B i ) d(A, B) = \sum_{i=1}^{n} \delta(A_i, B_i) d(A,B)=i=1nδ(Ai,Bi)
    其中 δ ( x , y ) \delta(x, y) δ(x,y)是指示函数,当 x ≠ y x \neq y x=y时为1,否则为0

1.1.2 选择k值

k值的选择对KNN算法的性能有重要影响。较小的k值意味着模型对噪声更敏感,而较大的k值可能导致模型对输入数据的特征不敏感

1.1.3 投票机制

对于分类问题,KNN算法通常采用“多数表决”规则,即一个新样本被分配到k个最近邻中最常见的类。如果存在多个类具有相同数量的最近邻,则可以随机选择一个类,或者基于距离加权投票

1.2 实现步骤

  1. 数据预处理:包括特征缩放和归一化,以确保所有特征对距离计算有相同的影响
  2. 选择k值:通过交叉验证等方法选择最优的k值
  3. 训练模型:KNN算法实际上没有显式的训练过程,它只是在预测时计算新样本与训练数据的距离
  4. 预测:对于一个新的样本,计算它与训练集中所有样本的距离,选择最近的k个样本,并根据这些样本的标签进行投票

1.3 参数选择

  • k值:如前所述,k值的选择对算法性能有很大影响。通常通过交叉验证来选择最优k值
  • 距离度量:根据数据的特性选择合适的距离度量方法

1.4 应用场景

  • 文本分类:如垃圾邮件检测
  • 图像识别:如手写数字识别
  • 推荐系统:通过用户之间的相似度来推荐商品或服务
  • 异常检测:识别与大多数数据差异较大的异常点

1.5 优缺点

1.5.1 优点

  • 算法简单,易于理解
  • 不需要建立模型,因此训练时间几乎为零
  • 可以用于分类和回归问题

1.5.2 缺点

  • 计算量大,特别是对于大数据集
  • 对噪声敏感,尤其是当k值较小时
  • 需要大量的内存存储所有训练数据

1.6 k-近邻代码实例

以下是使用Python和Scikit-learn库实现的K近邻算法的完整代码,该代码使用了鸢尾花数据集:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target
# 数据集分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 特征缩放
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 创建KNN分类器实例并训练
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
# 进行预测
y_pred = knn.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

代码解释:

  • 首先加载了鸢尾花数据集
  • 然后将其分为训练集和测试集
  • 接着对特征进行了标准化处理,以消除不同特征之间的量纲影响
  • 之后创建了一个K近邻分类器实例,并使用训练集进行了训练
  • 最后在测试集上进行了预测,并计算了模型的准确率
  • 在这个例子中,模型的准确率为1.0,即100%

三、如何选择k值

选择最优的k值是K近邻算法中的一个关键步骤,因为它直接影响到模型的性能。以下是一些常用的方法来确定最优的k值:

3.1 交叉验证

交叉验证是一种常用的方法来评估模型的泛化能力。以下是一个使用交叉验证来选择最优k值的步骤:

  1. 分割数据集:将数据集分割成训练集和验证集
  2. 循环遍历k值:对于每个可能的k值,使用训练集来训练模型,并在验证集上进行验证
  3. 评估性能:计算每个k值对应的验证集上的错误率或准确率
  4. 选择最优k值:选择错误率最低或准确率最高的k值

3.2 留出法(Hold-out Method)

与交叉验证类似,但是只将数据集分割一次:

  1. 分割数据集:将数据集分割成较大的训练集和较小的测试集
  2. 训练和测试:对于每个k值,使用训练集训练模型,并在测试集上进行测试
  3. 选择最优k值:根据测试集上的性能选择最优k值

3.3 学习曲线

通过绘制学习曲线,可以观察到随着k值的增加,模型在训练集和验证集上的性能如何变化:

  1. 训练和验证:对于不同的k值,绘制模型在训练集和验证集上的准确率
  2. 观察曲线:选择在验证集上准确率最高且训练集和验证集准确率差距最小的k值

3.4 超参数优化技术

使用如网格搜索(Grid Search)或随机搜索(Random Search)等超参数优化技术来搜索最优k值

3.5 Elbow Method

这是一种直观的方法,通过观察随着k值增加,模型误差的变化情况来确定k值:

  1. 计算误差:对于不同的k值,计算模型在验证集上的误差(例如,分类错误率)
  2. 绘制图表:将k值和对应的误差绘制成图表
  3. 寻找“肘部”:找到图表中误差开始明显减少的点,这个点通常被称为“肘部”,对应的k值就是最优k值

3.6 注意事项

  • 过小的k值可能导致模型对噪声敏感,过大的k值可能导致模型对输入数据的特征不敏感
  • 在实际应用中,k值通常选择为小于训练样本数的平方根
  • 选择最优k值时,应考虑到计算成本,特别是在处理大型数据集时

四、消极方法和积极方法的区别

在机器学习和数据挖掘领域,消极方法和积极方法通常是指处理缺失值的不同策略。这两种方法各有其原理和优缺点

4.1 消极方法(Passive Methods)

消极方法不直接处理缺失值,而是简单地忽略含有缺失值的样本或特征。这种方法的原理是假设缺失值对模型的影响很小,或者可以通过其他方法(如特征选择、数据清洗等)来减轻其影响

4.1.1 原理:

  • 忽略样本:直接从数据集中移除含有缺失值的样本
  • 忽略特征:在某些情况下,可以忽略含有缺失值的特征

4.1.2 性能上的优缺点:

  • 优点:简单易行,计算成本低
  • 缺点:可能导致数据集规模减小,从而影响模型的性能;同时,缺失值的存在可能是数据集中的重要信息,忽略它们可能会导致模型的准确性下降

4.2 积极方法(Active Methods)

积极方法试图通过某种方式估计或填充缺失值,以保留完整的数据集。这种方法的原理是利用现有数据来推断缺失值,从而保持数据的完整性

4.2.1 原理:

  • 插值法:使用相邻或相似数据点的值来估计缺失值。例如,使用线性插值、样条插值等
  • 基于模型的方法:使用机器学习模型(如K近邻、决策树、支持向量机等)来预测缺失值

4.2.2 性能上的优缺点:

  • 优点:保留了完整的数据集,可以更好地利用数据中的信息
  • 缺点:计算成本较高,且填充方法的选择会影响模型的性能。如果填充方法不合适,可能会引入额外的噪声,降低模型的准确性

4.3 综合考虑

在实际应用中,选择消极方法还是积极方法取决于具体问题、数据集的特性以及计算资源的限制

  • 对于大规模数据集,积极方法可能更合适,因为它可以保留更多的信息
  • 对于计算资源有限或缺失值较少的情况,消极方法可能更加实用

在实际操作中,还可以结合使用这两种方法,例如,先使用消极方法删除部分缺失值严重的样本,然后使用积极方法处理剩余的缺失值。这样可以充分利用数据中的信息,同时降低计算成本

这篇关于【机器学习】K近邻(K-Nearest Neighbors,简称KNN)的基本概念以及消极方法和积极方法的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1124214

相关文章

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

java连接opcua的常见问题及解决方法

《java连接opcua的常见问题及解决方法》本文将使用EclipseMilo作为示例库,演示如何在Java中使用匿名、用户名密码以及证书加密三种方式连接到OPCUA服务器,若需要使用其他SDK,原理... 目录一、前言二、准备工作三、匿名方式连接3.1 匿名方式简介3.2 示例代码四、用户名密码方式连接4

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依