BZOJ 2440 2301 莫比乌斯应用

2024-08-31 12:48
文章标签 应用 bzoj 莫比 乌斯 2440 2301

本文主要是介绍BZOJ 2440 2301 莫比乌斯应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://www.lydsy.com/JudgeOnline/problem.php?id=2440

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。 

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50


题目意思:求第k个不完整平方数。
无平方因子数(Square-Free Number),即分解之后所有质因数的次数都为1的数
首先二分答案 问题转化为求[1,x]之间有多少个无平方因子数
根据容斥原理可知 对于sqrt(x)以内所有的质数 有
  x以内的无平方因子数
=0个质数乘积的平方的倍数的数的数量(1的倍数)
-每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...)

+每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...

容易发现每个乘积a^2前面的符号恰好是mu[a]

#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
#define maxn 1000000
#define LL long long
LL mu[maxn+1];
LL pri[maxn+1],tot;
bool isprime[maxn+1];
void init(){tot=0;isprime[0]=isprime[1]=false;for(LL i=2;i<=maxn;i++)isprime[i]=true;for(LL i=2;i<=maxn;i++){if(isprime[i]){pri[tot++]=i;mu[i]=-1;}for(LL j=0;j<tot&&i*pri[j]<=maxn;j++){isprime[i*pri[j]]=0;if(i%pri[j]==0){mu[i*pri[j]]=0;break;}mu[i*pri[j]]=-mu[i];}}
}
LL calc(LL m){LL res=0;for(LL i=2;i*i<=m;i++){LL tmp=m/(i*i);res-=mu[i]*tmp;}return res;
}
LL bin(LL m){LL res=m;for(LL i=2;i*i<=m;i++){LL tmp=m/(i*i);res+=mu[i]*tmp;}return res;
}
int main(){init();LL T;scanf("%lld",&T);while(T--){LL k;scanf("%lld",&k);
//        LL t = k + calc(k);
//        while(t-calc(t)!=k){
//            t = k + calc(t);
//        }LL l=k + calc(k),r=k+k,tt,cnt;
//        cout<<calc(4)<<endl;while(l<=r){tt=(l+r)>>1;cnt=bin(tt);
//            cout<<cnt<<" "<<l<<" "<<r<<" "<<tt<<endl;if(cnt>k)r=tt-1;else if(cnt<k)l=tt+1;else if(cnt==k&&calc(tt-1)==calc(tt)){break;}else{r=tt-1;}}
//        cout<<cnt<<" "<<l<<" "<<r<<" "<<tt<<endl;printf("%lld\n",tt);}return 0;
}

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3




题意很清楚了,求多少个(x,y)对。

那么令f(k)表示为gcd(x,y)=k的个数,其中a<=x<=b  && c<=y<=d

如此,对应F(k)表示gcd(x,y)=k倍数的数的个数。

对于这个题,假设用函数calc(b,d)计算表示为1<=x<=b  && 1<=y<=d的gcd(x,y)==k的对数,那么最终结果为:

calc(b,d)-calc(a-1,d)-calc(b,c-1)+cala(a-1,c-1)

如此一来,计算F(k)就方便了,比如calc(b,d)的话,

F[k]=(b/k)*(d/k)。

然后通过莫比乌斯反演得到f(k)即为结果。

但是会TLE。

需要优化,

观察式子,发现  (n/k)      最多有     2sqrt(n)  个取值
那么   (n/k)*(m/k)            就至多有       2(sqrt(n)+sqrt(m))            个取值
枚举这 些 取值,对莫比乌斯函数维护一个前缀和,就可以在  sqrt(n)        时间内出解
总时间复杂度nsqrt(n)
枚举除法的取值这种方法在莫比乌斯反演的应用当中非常常用,且代码并不难写

if(n>m) swap(n,m);
for(i=1;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
re+=(n/i)*(m/i)*(sum[last]-sum[i-1]);
}
return re;

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 50000
int mu[maxn+1],sum[maxn+1];
int notprime[maxn+1];
int pri[maxn+1],tot;
void init(){mu[1]=1;sum[1]=1;for(int i=2;i<=maxn;i++){if(!notprime[i]){pri[tot++]=i;mu[i]=-1;}for(int j=0;j<tot&&pri[j]*i<=maxn;j++){notprime[i*pri[j]]=1;if(i%pri[j]==0){mu[i*pri[j]]=0;break;}mu[i*pri[j]]=-mu[i];}sum[i]=sum[i-1]+mu[i];}
}
/****************************************************
int calc(int n,int m,int k){    //TLE  case T moreif(n>m)swap(n,m);int res=0;for(int i=k;i<=n;i+=k)res+=mu[i/k]*(n/i)*(m/i);return res;
}
*****************************************************/
int calc(int n,int m,int k){    //TLE  case T moreif(n>m)swap(n,m);n/=k,m/=k;int res=0,last;for(int i=1;i<=n;i=last+1){last=min(n/(n/i),m/(m/i));
//        cout<<i<<" "<<k<<endl;res+=(sum[last]-sum[i-1])*(n/i)*(m/i);}return res;
}
int main(){init();int T;scanf("%d",&T);while(T--){int a,b,c,d,k;scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);int ans=calc(b,d,k)-calc(a-1,d,k)-calc(b,c-1,k)+calc(a-1,c-1,k);printf("%d\n",ans);}return 0;
}



这篇关于BZOJ 2440 2301 莫比乌斯应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123946

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.