python实战实例:图像相似度旋转模糊处理

2024-08-31 10:52

本文主要是介绍python实战实例:图像相似度旋转模糊处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.图像相似度—题目描述

给出两幅相同大小的黑白图像(用 0−1矩阵)表示,求它们的相似度。

说明:若两幅图像在相同位置上的像素点颜色相同,则称它们在该位置具有相同的像素点。两幅图像的相似度定义为相同像素点数占总像素点数的百分比。

输入格式

第一行包含两个整数 m 和 n,表示图像的行数和列数,中间用单个空格隔开。

之后 m 行,每行 n个整数 0 或 1,表示第一幅黑白图像上各像素点的颜色。相邻两个数之间用单个空格隔开。

之后 m 行,每行 n 个整数 0 或 1,表示第二幅黑白图像上各像素点的颜色。相邻两个数之间用单个空格隔开。

输出格式

一个实数,表示相似度(以百分比的形式给出),精确到小数点后两位。

输入输出样例

输入 #1

3 3
1 0 1
0 0 1
1 1 0
1 1 0
0 0 1
0 0 1

输出 #1

44.44
m,n=map(int,input().split())
a=[[0 for _ in range(n)]for _ in range(m)]
b=[[0 for _ in range(n)]for _ in range(m)]
x=0
for i in range(m):row=input().split()for j in range(n):a[i][j]=eval(row[j])
for i in range(m):row=input().split()for j in range(n):b[i][j]=eval(row[j])
for i in range(m):for j in range(n):if a[i][j]==b[i][j]:x=x+1
print("%.2f"%(x/(m*n)*100))

解析:

  • a=[[0 for _ in range(n)]for _ in range(m)]定义一个m行n列的矩阵。
  • 输入数据给矩阵赋值。
  • 直接循环判断两个矩阵的相同的点,除以矩阵大小即得出相似度。

2.图像旋转—题目描述

输入一个 n 行 m 列的黑白图像,将它顺时针旋转 90度后输出。

输入格式

第一行包含两个整数 n 和 m,表示图像包含像素点的行数和列数。

接下来 n行,每行 m个整数,表示图像的每个像素点灰度。相邻两个整数之间用单个空格隔开。

输出格式

m 行,每行 n个整数,为顺时针旋转 90度后的图像。相邻两个整数之间用单个空格隔开。

输入输出样例

输入 #1

3 3
1 2 3
4 5 6
7 8 9

输出 #1

7 4 1
8 5 2
9 6 3
n,m=map(int,input().split())
a=[[0 for _ in range(m)]for _ in range(n)]
for i in range(n):x=input().split()for j in range(m):a[i][j]=int(x[j])
for i in range(m):for j in range(n-1,-1,-1):print(a[j][i],end=' ')print()

解析:

  • 旋转90度后矩阵元素的下标:
a[2][0] a[1][0] a[0][0]
a[2][1] a[1][1] a[0][1]
a[2][2] a[1][2] a[0][2]
  • 所以将列下标倒序输出即可。

3.图像模糊处理—题目描述

给定 n行 m列的图像各像素点的灰度值,要求用如下方法对其进行模糊化处理:

1. 四周最外侧的像素点灰度值不变;

2. 中间各像素点新灰度值为该像素点及其上下左右相邻四个像素点原灰度值的平均(舍入到最接近的整数)。

输入格式

第一行包含两个整数 n 和 m,表示图像包含像素点的行数和列数。

接下来 n 行,每行 m个整数,表示图像的每个像素点灰度。相邻两个整数之间用单个空格隔开。

输出格式

n 行,每行 m 个整数,为模糊处理后的图像。相邻两个整数之间用单个空格隔开。

输入输出样例

输入 #1

4 5
100 0 100 0 50
50 100 200 0 0
50 50 100 100 200
100 100 50 50 100

输出 #1

100 0 100 0 50
50 80 100 60 0
50 80 100 90 200
100 100 50 50 100
n,m=map(int,input().split())
a=[[0 for _ in range(m)]for _ in range(n)]
b=[[0 for _ in range(m)]for _ in range(n)]
for i in range(n):x=input().split()for j in range(m):a[i][j]=int(x[j])
for i in range(n):for j in range(m):if i==0 or i==n-1 or j==0 or j==m-1:b[i][j]=a[i][j]else:b[i][j]=round((a[i][j]+a[i-1][j]+a[i+1][j]+a[i][j-1]+a[i][j+1])/5)
for i in range(n):for j in range(m):print(b[i][j],end=' ')print() 

 解析:

  • 定义两个矩阵,一个原矩阵,一个新矩阵。
  • 首先判断是否首行、末行、首列、末列,如果是,值不变。
  • 如果不是,求出该元素及其上下左右相邻四个像素点原灰度值的平均值覆盖原值。
  • 输出新矩阵即可。

到矩阵啦~

这篇关于python实战实例:图像相似度旋转模糊处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123704

相关文章

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Apache Ignite缓存基本操作实例详解

《ApacheIgnite缓存基本操作实例详解》文章介绍了ApacheIgnite中IgniteCache的基本操作,涵盖缓存获取、动态创建、销毁、原子及条件更新、异步执行,强调线程池注意事项,避免... 目录一、获取缓存实例(Getting an Instance of a Cache)示例代码:二、动态

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima