redis作为单线程NoSQL为何快到不敢相信

2024-08-31 07:58

本文主要是介绍redis作为单线程NoSQL为何快到不敢相信,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

纯内存数据库,如果只是简单的 key-value,内存不是瓶颈。一般情况下,hash 查找可以达到每秒数百万次的数量级。

瓶颈在于网络 IO 上。

根据你测的的 10000/s 来看,客户端和 redis 应该是部署在两台不同的机器,并且是使用同步的方式请求 redis. 每次请求需要通过网络把请求发送到 redis 所在的机器,然后等待 redis 返回数据。时间大部分消耗在网络传输中。

如果把 redis 和客户端放在同一台机器,网络延迟会更小,一般情况下可以打到 60000 次每秒甚至更高,取决于机器性能。

锁不是影响性能的主要因素。线程锁 (mutex_lock) 只有在遇到冲突的情况下性能会下降,而正常情况下,遇到冲突的概率很低。如果只是简单的加锁、释放锁速度是非常快的,每秒钟上千万次没问题。memcache 内部用到了大量的锁,并没有见到性能降低。

线程也不是影响吞吐量的重要因素。如第一点来说,一般情况下,程序处理内存数据的速度远高于网卡接收的速度。使用线程好处是可以同时处理多条连接,在极端情况下,可能会提高响应速度。

使用 epoll 或 libevent 等因为异步非阻塞 IO 编程只能这么做。与之对应的是同步阻塞 IO 编程,使用多进程或多线程实现多条连接的处理,比如 apache。一般情况下,异步非阻塞 IO 模型性能是远高于同步阻塞 IO 模型的,可以参考 nginx 与 apache 性能的对比。

libevent 并不比 redis 自己实现的 ae_event 慢,代码多是应为 ae_event 只实现了 redis 需要的功能,而 libevent 则具有更多的功能,比如更快的定时器、buffer event 模型,甚至自带了 DNS、HTTP 协议的处理。并且 libevent 更通用,而 redis 只专注于 linux 平台。

最后回答题主问题,快在哪?
1、纯内存操作
2、异步非阻塞 IO
本博客的个人观点:
1. REDIS很注重让线程的每次操作都尽量简短,会将功能细分成多个逻辑块,每个逻辑块都分别让线程在自己的独立的时间片完成,而不是一个时间片做整个功能。
比如,主从服务器的复制功能。从服务器收到SLAVE OF的命令后,会记录信息,然后交由serverCron来进行socket建链,然后再次交由serverCron进行slave向master的ping操作,然后再次交由serverCron进行Pong的接收。这样其他功能在每次功能块执行结束后都能被执行,而不至于线程的时间都堵塞在某一个功能上。
REDIS epoll 讲解
https://www.cnblogs.com/yuxingfirst/archive/2012/11/18/2776012.html
/* Include the best multiplexing layer supported by this system.
 * The following should be ordered by performances, descending. */
#ifdef HAVE_EVPORT
#include "ae_evport.c"
#else
    #ifdef HAVE_EPOLL
    #include "ae_epoll.c"
    #else
        #ifdef HAVE_KQUEUE
        #include "ae_kqueue.c"
        #else
        #include "ae_select.c"
        #endif
    #endif
#endif

建链流程:
2 initServer->aeCreateEventLoop->aeApiCreate  创建epoll实例  state->epfd = epoll_create(1024);
3.initServer->listenToPort->anetUnixServer->anetTcpServer 创建本地socket fd-1
4. initServer->aeCreateFileEvent->aeApiAddEvent->epoll_ctl(epfd,fd-1);把处理函数acceptTcpHandler注册到wfileProc/rfileProc

5. main->acMain->aeProcessEvents->aeApiPoll->epoll_wait->如果有数据->wfileProc/rfileProc 回调到 acceptTcpHandler->accept,建链完成
建链完成后,会针对这个新的fd创建redis client结构
而在client的创建过程中,createClient会再次注册一个event,回调函数readQueryFromClient,来进行从这个新socket的数据的接收

这篇关于redis作为单线程NoSQL为何快到不敢相信的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123326

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

Redis分布式锁中Redission底层实现方式

《Redis分布式锁中Redission底层实现方式》Redission基于Redis原子操作和Lua脚本实现分布式锁,通过SETNX命令、看门狗续期、可重入机制及异常处理,确保锁的可靠性和一致性,是... 目录Redis分布式锁中Redission底层实现一、Redission分布式锁的基本使用二、Red

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字