Linux-Flash驱动(2)-块设备驱动实例分析

2024-08-31 06:48

本文主要是介绍Linux-Flash驱动(2)-块设备驱动实例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一节课中,我们在内存中划分出512kB作为一个块设备,并对它实现读写的操作。现在我们来具体分析这段代码。

 

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>#include <linux/sched.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h>   /* kmalloc() */
#include <linux/fs.h>   /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/timer.h>
#include <linux/types.h> /* size_t */
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/hdreg.h> /* HDIO_GETGEO */
#include <linux/kdev_t.h>
#include <linux/vmalloc.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h> /* invalidate_bdev */
#include <linux/bio.h>MODULE_LICENSE("Dual BSD/GPL");static int major = 0;static int sect_size = 512;static int nsectors = 1024; /*
* The internal representation of our device.
*/
struct blk_dev{int size;                        /* Device size in sectors */u8 *data;                        /* The data array */struct request_queue *queue;     /* The device request queue */struct gendisk *gd;              /* The gendisk structure */
};struct blk_dev *dev;/*
* Handle an I/O request, in sectors.
*/
static void blk_transfer(struct blk_dev *dev, unsigned long sector,unsigned long nsect, char *buffer, int write)
{unsigned long offset = sector*sect_size;unsigned long nbytes = nsect*sect_size;if ((offset + nbytes) > dev->size) {printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes);return;}if (write)memcpy(dev->data + offset, buffer, nbytes);elsememcpy(buffer, dev->data + offset, nbytes);
}/*
* 读写请求处理函数
*/
static void blk_request(struct request_queue *q)
{struct request *req;//从队列中取出要处理的一个请求req = blk_fetch_request(q);while (req != NULL) {struct blk_dev *dev = req->rq_disk->private_data;blk_transfer(dev, blk_rq_pos(req), blk_rq_cur_sectors(req), req->buffer, rq_data_dir(req));if(!__blk_end_request_cur(req, 0)) {req = blk_fetch_request(q);}}
}/*
* Transfer a single BIO.
*/
static int blk_xfer_bio(struct blk_dev *dev, struct bio *bio)
{int i;struct bio_vec *bvec;sector_t sector = bio->bi_sector;/* Do each segment independently. */bio_for_each_segment(bvec, bio, i) {char *buffer = __bio_kmap_atomic(bio, i, KM_USER0);blk_transfer(dev, sector, bio_cur_bytes(bio)>>9 /* in sectors */, buffer, bio_data_dir(bio) == WRITE);sector += bio_cur_bytes(bio)>>9; /* in sectors */__bio_kunmap_atomic(bio, KM_USER0);}return 0; /* Always "succeed" */
}/*
* Transfer a full request.
*/
static int blk_xfer_request(struct blk_dev *dev, struct request *req)
{struct bio *bio;int nsect = 0;__rq_for_each_bio(bio, req) {blk_xfer_bio(dev, bio);nsect += bio->bi_size/sect_size;}return nsect;
}/*
* The device operations structure.
*/
static struct block_device_operations blk_ops = {
.owner            = THIS_MODULE,
};/*
* Set up our internal device.
*/
static void setup_device()
{//计算设备大小dev->size = nsectors*sect_size;dev->data = vmalloc(dev->size);if (dev->data == NULL) {printk (KERN_NOTICE "vmalloc failure.\n");return;}//把块设备放入请求队列中,blk_request用于指明处理这个请求的函数dev->queue = blk_init_queue(blk_request, NULL);if (dev->queue == NULL)goto out_vfree;//指明设备的扇区大小blk_queue_logical_block_size(dev->queue, sect_size);dev->queue->queuedata = dev;//分配gendisk结构dev->gd = alloc_disk(1);if (! dev->gd) {printk (KERN_NOTICE "alloc_disk failure\n");goto out_vfree;}/*初始化alloc_disk*/dev->gd->major = major;//主设备号dev->gd->first_minor = 0;//次设备号dev->gd->fops = &blk_ops;//操作函数集dev->gd->queue = dev->queue;//请求队列dev->gd->private_data = dev;//私有数据sprintf (dev->gd->disk_name, "simp_blk%d", 0);//磁盘名字set_capacity(dev->gd, nsectors*(sect_size/sect_size));//扇区数//注册块设备add_disk(dev->gd);return;out_vfree:if (dev->data)vfree(dev->data);
}static int __init blk_init(void)
{/** 注册块设备,申请主设备号*/major = register_blkdev(major, "blk");if (major <= 0) {printk(KERN_WARNING "blk: unable to get major number\n");return -EBUSY;}//申请一个描述结构(不是每个块设备都有)dev = kmalloc(sizeof(struct blk_dev), GFP_KERNEL);if (dev == NULL)goto out_unregister;//安装这个设备setup_device();return 0;out_unregister:unregister_blkdev(major, "sbd");return -ENOMEM;
}static void blk_exit(void)
{if (dev->gd) {del_gendisk(dev->gd);put_disk(dev->gd);}if (dev->queue)blk_cleanup_queue(dev->queue);if (dev->data)vfree(dev->data);nregister_blkdev(major, "blk");kfree(dev);
}module_init(blk_init);
module_exit(blk_exit);	unsigned long offset = sector*sect_size;unsigned long nbytes = nsect*sect_size;if ((offset + nbytes) > dev->size) {printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes);return;}if (write)memcpy(dev->data + offset, buffer, nbytes);elsememcpy(buffer, dev->data + offset, nbytes);
}/*
* 读写请求处理函数
*/
static void blk_request(struct request_queue *q)
{struct request *req;//从队列中取出要处理的一个请求req = blk_fetch_request(q);while (req != NULL) {struct blk_dev *dev = req->rq_disk->private_data;blk_transfer(dev, blk_rq_pos(req), blk_rq_cur_sectors(req), req->buffer, rq_data_dir(req));if(!__blk_end_request_cur(req, 0)) {req = blk_fetch_request(q);}}
}/*
* Transfer a single BIO.
*/
static int blk_xfer_bio(struct blk_dev *dev, struct bio *bio)
{int i;struct bio_vec *bvec;sector_t sector = bio->bi_sector;/* Do each segment independently. */bio_for_each_segment(bvec, bio, i) {char *buffer = __bio_kmap_atomic(bio, i, KM_USER0);blk_transfer(dev, sector, bio_cur_bytes(bio)>>9 /* in sectors */, buffer, bio_data_dir(bio) == WRITE);sector += bio_cur_bytes(bio)>>9; /* in sectors */__bio_kunmap_atomic(bio, KM_USER0);}return 0; /* Always "succeed" */
}/*
* Transfer a full request.
*/
static int blk_xfer_request(struct blk_dev *dev, struct request *req)
{struct bio *bio;int nsect = 0;__rq_for_each_bio(bio, req) {blk_xfer_bio(dev, bio);nsect += bio->bi_size/sect_size;}return nsect;
}/*
* The device operations structure.
*/
static struct block_device_operations blk_ops = {
.owner            = THIS_MODULE,
};/*
* Set up our internal device.
*/
static void setup_device()
{//计算设备大小dev->size = nsectors*sect_size;dev->data = vmalloc(dev->size);if (dev->data == NULL) {printk (KERN_NOTICE "vmalloc failure.\n");return;}//把块设备放入请求队列中,blk_request用于指明处理这个请求的函数dev->queue = blk_init_queue(blk_request, NULL);if (dev->queue == NULL)goto out_vfree;//指明设备的扇区大小blk_queue_logical_block_size(dev->queue, sect_size);dev->queue->queuedata = dev;//分配gendisk结构dev->gd = alloc_disk(1);if (! dev->gd) {printk (KERN_NOTICE "alloc_disk failure\n");goto out_vfree;}/*初始化alloc_disk*/dev->gd->major = major;//主设备号dev->gd->first_minor = 0;//次设备号dev->gd->fops = &blk_ops;//操作函数集dev->gd->queue = dev->queue;//请求队列dev->gd->private_data = dev;//私有数据sprintf (dev->gd->disk_name, "simp_blk%d", 0);//磁盘名字set_capacity(dev->gd, nsectors*(sect_size/sect_size));//扇区数//注册块设备add_disk(dev->gd);return;out_vfree:if (dev->data)vfree(dev->data);
}static int __init blk_init(void)
{/** 注册块设备,申请主设备号*/major = register_blkdev(major, "blk");if (major <= 0) {printk(KERN_WARNING "blk: unable to get major number\n");return -EBUSY;}//申请一个描述结构(不是每个块设备都有)dev = kmalloc(sizeof(struct blk_dev), GFP_KERNEL);if (dev == NULL)goto out_unregister;//安装这个设备setup_device();return 0;out_unregister:unregister_blkdev(major, "sbd");return -ENOMEM;
}static void blk_exit(void)
{if (dev->gd) {del_gendisk(dev->gd);put_disk(dev->gd);}if (dev->queue)blk_cleanup_queue(dev->queue);if (dev->data)vfree(dev->data);nregister_blkdev(major, "blk");kfree(dev);
}module_init(blk_init);
module_exit(blk_exit);

 

 

 

这是一个模块的程序,先看看模块初始化里面的blk_init函数,里面做了这几件事:

1、注册一个快设备register_blkdev,如果没有分配到主设备号则打印错误信息

2、然后是申请一个结构,这个结构是用来保存这个块设备信息的,不是每个块设备都有

3、再安装这个设备setup_device,这个函数是自定义的

    3.1完成块设备大小的计算

    3.2把快设备放入请求队列中(IO调度层把请求排序后放入请求队列中,里面的参数blk_request是一个函数,用于指明使用哪个函数对这个请求进行处理)

    3.3指明设备的扇区大小

    3.4然后用alloc_disk函数分配一个gendisk结构(一个驱动可能对于几个块设备,用gendisk来区分)

    3.5紧接着需要对这个结构进行初始化,如下:

 

	/*初始化alloc_disk*/dev->gd->major = major;//主设备号dev->gd->first_minor = 0;//次设备号dev->gd->fops = &blk_ops;//操作函数集dev->gd->queue = dev->queue;//请求队列dev->gd->private_data = dev;//私有数据sprintf (dev->gd->disk_name, "simp_blk%d", 0);//磁盘名字set_capacity(dev->gd, nsectors*(sect_size/sect_size));//扇区数

3.6注册这个块设备

 

第二个重要的函数是实现读写请求处理,读写请求通过blk_request函数来实现:

1、使用blk_fetch_request从队列中取出要处理的一个请求

2、使用blk_transfer实现对对应扇区的硬件操作,比如读和写,应该这里的块设备是内存模拟的,所以使用的是memcpy函数

3、使用__blk_end_request_cur判断请求队列是否还有请求要处理,如果有则继续处理,没有退出。
 

更多Linux资料及视频教程点击这里

这篇关于Linux-Flash驱动(2)-块设备驱动实例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123196

相关文章

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Linux中修改Apache HTTP Server(httpd)默认端口的完整指南

《Linux中修改ApacheHTTPServer(httpd)默认端口的完整指南》ApacheHTTPServer(简称httpd)是Linux系统中最常用的Web服务器之一,本文将详细介绍如何... 目录一、修改 httpd 默认端口的步骤1. 查找 httpd 配置文件路径2. 编辑配置文件3. 保存