【数据结构】关于哈希表内部原理,你到底了解多少???(超详解)

2024-08-31 06:44

本文主要是介绍【数据结构】关于哈希表内部原理,你到底了解多少???(超详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

🌟🌟本期讲解关于哈希表的内部实现原理,希望能帮到屏幕前的你。

🌈上期博客在这里:http://t.csdnimg.cn/7D225

🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客

目录

 📚️1.哈希表的概念

📚️2.哈希-冲突

2.1冲突-概念

 2.2冲突-避免

1.冲突-避免-哈希函数设计

2.冲突-避免-冲突因子

2.3冲突-解决

1.冲突-解决-闭散列

2.冲突-解决-开散列

 2.4性能分析

2.5与Java类集的关系

 📚️3.总结


 📚️1.哈希表的概念

       顺序结构以及平衡树中在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N);

      平衡树中为树的高度,即O(logN ),搜索的效率取决于搜索过程中元素的比较次数。例如上期的treeMap.

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

  • 插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功


方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(HashTable)(或者称散列表)

 哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

图解 :

注意:这里和计数排序差不多 ,但是如果我们加入11,会发现11的位置将直接把1给覆盖掉,那么此时就叫作哈希-冲突。

📚️2.哈希-冲突

2.1冲突-概念

对于两个数据元素的关键字ki 和kj (i != j),有ki !=kj ,但有:Hash(ki ) == Hash(kj ),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞

 2.2冲突-避免

首先,我们需要明确一点,由于我们哈希表底层数组的容量往往是小于实际要存储的关键字的数量的,这就导致一个问题,冲突的发生是必然的,但我们能做的应该是尽量的降低冲突率

1.冲突-避免-哈希函数设计

哈希函数设计原理:

• 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间


• 哈希函数计算出来的地址能均匀分布在整个空间中


• 哈希函数应该比较简单

小编这里介绍两个比较常用的两个方法: 

1. 直接定制法
       取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况。

例如字符串中第一个只出现一次字符

代码实例如下:

class Solution {public int firstUniqChar(String s) {int[] array=new int[26];for(int i=0;i<s.length();i++){char ch=s.charAt(i);array[ch-'a']++;}for(int j=0;j<s.length();j++){if(array[s.charAt(j)-'a']==1){return j;}}return -1;}
}

思路:就是创建一个26个空间大小的数组,在遍历字符串时,将字符对应的位置加一,最后再次遍历谁为1,就返回第一个不重复的字符。 

注意:这种方法只适合要求范围小的数值内进行操作,如果范围过大,则会造成数组空间的浪费。

 2. 除留余数法
      设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址

2.冲突-避免-冲突因子

负载因子与冲突率图片演示:

 

 已知哈希表中已有的关键字个数是不可变的,那我们能调整的就只有哈希表中的数组的大小。(我们不可能在源头上限制我们的需求)

2.3冲突-解决

1.冲突-解决-闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

线性探测:

这里就是,当我们先插入了一个1后,然后想插入11,此时发现取余地址冲突了,此时我们就要往后寻空位置,发现后进行插入。

图片演示:

注意:

      不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。

      产生冲突的数据堆积在一块

二次探测

找下一个空位置的方法为:Hi = (H0 +i^2 )% m, 或者:Hi= (H0 -i^2 )% m。其中:i = 1,2,3…, 是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的置,m是表的大小。

图片演示:

当然这是一个极端的例子~~~ 

注意:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

2.冲突-解决-开散列

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中。

图解如下:

 注意:刚才我们提到了,哈希桶其实可以看作将大集合的搜索问题转化为小集合的搜索问题了,那如果冲突严重,就意味着小集合的搜索性能其实也时不佳的,这个时候我们就可以将这个所谓的小集合搜索问题继续进行转化,例如:
1. 每个桶的背后是另一个哈希表
2. 每个桶的背后是一棵搜索树

 开散列的代码实现模拟:

public class HashBucket {//结点链表的初始化static class Node{public int key;public int val;public Node next;public Node(int key,int val){this.key=key;this.val=val;}}//数组的初始化public Node[] array=new Node[10];public int usedSize;//插入元素public void put(int key,int value){/* int index=key% array.length;//遍历链表//头插法Node cur=array[index];while (cur!=null){if(cur.key==key){cur.val=value;return;}cur=cur.next;}Node node=new Node(key,value);node.next=array[index];array[index]=node;usedSize++;*///尾插Node node=new Node(key,value);int index=key% array.length;if(array[index]==null){array[index]=node;return;}Node cur=array[index];Node prev=null;while (cur!=null){if(cur.key==key){cur.val=value;return;}prev=cur;cur=cur.next;}prev.next=node;usedSize++;//负载因子是否大于0.75if(loadFactor()>0.75){resize();}}public int loadFactor(){return usedSize/ array.length;}//进行扩容public void resize(){Node[] tmpArray=new Node[array.length*2];for (int i = 0; i < array.length; i++) {Node cur=array[i];while (cur!=null){Node newCur=cur.next;int newIndex=cur.key% tmpArray.length;//进行头插法cur.next=tmpArray[newIndex];tmpArray[newIndex]=cur;cur=newCur;}}array=tmpArray;}//进行取出public int get(int key){//判断k在哪里int index=key%array.length;Node cur=array[index];while (cur!=null){if(cur.key==key){return cur.val;}cur=cur.next;}return -1;}

这里小编模拟了哈希表开散列的放入数据的两种插入方式,即链表的头插法以及链表的尾插法。

注意扩容:

1.进行原来数值的项管部位置的插入,因为扩容后的数组容量大小进行变化,必须进行重新取余。

2.在进行在新的扩容数组后,使用的cur要进行保留,否则进行新的数组插入后,cur无法回到原来数组进行遍历剩余的数值遍历。 

 2.4性能分析

虽然哈希表一直在和冲突做斗争,但在实际使用过程中,我们认为哈希表的冲突率是不高的,冲突个数是可控的所以,通常意义下,我们认为哈希表的插入/删除/查找时间复杂度是O(1) 。

1.每个桶中的链表的长度是一个常数,并且可以进行调整。

2.负载因子的存在,使得在遍历时可以进数值过多的扩容。

2.5与Java类集的关系

1. HashMap 和 HashSet 即 java 中利用哈希表实现的 Map 和 Set


2. java 中使用的是哈希桶方式解决冲突的


3. java 会在冲突链表长度大于一定阈值后,将链表转变为搜索树(红黑树)


4. java 中计算哈希值实际上是调用的类的 hashCode 方法,进行 key 的相等性比较是调用 key 的 equals 方法。所以如果要用自定义类作为 HashMap 的 key 或者 HashSet 的值,必须覆写 hashCode 和 equals 方法。

 📚️3.总结

💬💬本期小编讲解了关于哈希表的内部原理,以及它的重点内部原理冲突的避免以及冲突的解决。

本期主要是解释性语言较多,注重理解,唯一的难点是开散列的模拟代码实现。

🌅🌅🌅~~~~最后希望与诸君共勉,共同进步!!!


                               💪💪💪以上就是本期内容了, 感兴趣的话,就关注小编吧。

                                                         😊😊  期待你的关注~~~

这篇关于【数据结构】关于哈希表内部原理,你到底了解多少???(超详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123177

相关文章

Mysql数据库聚簇索引与非聚簇索引举例详解

《Mysql数据库聚簇索引与非聚簇索引举例详解》在MySQL中聚簇索引和非聚簇索引是两种常见的索引结构,它们的主要区别在于数据的存储方式和索引的组织方式,:本文主要介绍Mysql数据库聚簇索引与非... 目录前言一、核心概念与本质区别二、聚簇索引(Clustered Index)1. 实现原理(以 Inno

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置