Linux-IIC驱动(3)-IIC用户态驱动程序设计

2024-08-31 06:38

本文主要是介绍Linux-IIC驱动(3)-IIC用户态驱动程序设计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

之前已经说过,有2种i2c驱动程序的设计,比如说针对EEPROM的驱动程序。我们可以专门编写一个针对EEPROM的驱动程序。另一种方式就是通过i2c-dev,即通过i2c通用通用驱动,来编写一个应用程序,来完成对设备的控制。

 

我们现在就来实现i2c用户态驱动程序的设计。

通用设备驱动分析

首先需要分析i2c-dev,先打开i2c-dev.c这个文件,找到i2c_dev_init函数

 

/* ------------------------------------------------------------------------- *//** module load/unload record keeping*/static int __init i2c_dev_init(void)
{int res;printk(KERN_INFO "i2c /dev entries driver\n");res = register_chrdev(I2C_MAJOR, "i2c", &i2cdev_fops);if (res)goto out;i2c_dev_class = class_create(THIS_MODULE, "i2c-dev");if (IS_ERR(i2c_dev_class)) {res = PTR_ERR(i2c_dev_class);goto out_unreg_chrdev;}res = i2c_add_driver(&i2cdev_driver);if (res)goto out_unreg_class;return 0;out_unreg_class:class_destroy(i2c_dev_class);
out_unreg_chrdev:unregister_chrdev(I2C_MAJOR, "i2c");
out:printk(KERN_ERR "%s: Driver Initialisation failed\n", __FILE__);return res;
}

 

 

 

register_chrdev用于创建注册一个字符设备,class_create用于生产一个字符类的设备文件,i2c_add_driver这是用来向Linux系统注册一个i2c设备驱动。

 

接下来分析操作函数

 

static const struct file_operations i2cdev_fops = {.owner		= THIS_MODULE,.llseek		= no_llseek,.read		= i2cdev_read,.write		= i2cdev_write,.unlocked_ioctl	= i2cdev_ioctl,.open		= i2cdev_open,.release	= i2cdev_release,
};


这里包含很多操作,我们重点分析i2cdev_ioctl,因为在用户态中,主要通过这个函数来实现对设备的操作。

 

 

 

static long i2cdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{struct i2c_client *client = (struct i2c_client *)file->private_data;unsigned long funcs;dev_dbg(&client->adapter->dev, "ioctl, cmd=0x%02x, arg=0x%02lx\n",cmd, arg);switch ( cmd ) {case I2C_SLAVE:case I2C_SLAVE_FORCE:/* NOTE:  devices set up to work with "new style" drivers* can't use I2C_SLAVE, even when the device node is not* bound to a driver.  Only I2C_SLAVE_FORCE will work.** Setting the PEC flag here won't affect kernel drivers,* which will be using the i2c_client node registered with* the driver model core.  Likewise, when that client has* the PEC flag already set, the i2c-dev driver won't see* (or use) this setting.*/if ((arg > 0x3ff) ||(((client->flags & I2C_M_TEN) == 0) && arg > 0x7f))return -EINVAL;if (cmd == I2C_SLAVE && i2cdev_check_addr(client->adapter, arg))return -EBUSY;/* REVISIT: address could become busy later */client->addr = arg;return 0;case I2C_TENBIT:if (arg)client->flags |= I2C_M_TEN;elseclient->flags &= ~I2C_M_TEN;return 0;case I2C_PEC:if (arg)client->flags |= I2C_CLIENT_PEC;elseclient->flags &= ~I2C_CLIENT_PEC;return 0;case I2C_FUNCS:funcs = i2c_get_functionality(client->adapter);return put_user(funcs, (unsigned long __user *)arg);case I2C_RDWR:return i2cdev_ioctl_rdrw(client, arg);case I2C_SMBUS:return i2cdev_ioctl_smbus(client, arg);case I2C_RETRIES:client->adapter->retries = arg;break;case I2C_TIMEOUT:/* For historical reasons, user-space sets the timeout* value in units of 10 ms.*/client->adapter->timeout = msecs_to_jiffies(arg * 10);break;default:/* NOTE:  returning a fault code here could cause trouble* in buggy userspace code.  Some old kernel bugs returned* zero in this case, and userspace code might accidentally* have depended on that bug.*/return -ENOTTY;}return 0;
}


里面实现了很多操作,我们主要关心的又是I2C_RDWR这个操作,即读和写。我们看看这个函数i2cdev_ioctl_rdrw

 

 

static noinline int i2cdev_ioctl_rdrw(struct i2c_client *client,unsigned long arg)
{struct i2c_rdwr_ioctl_data rdwr_arg;struct i2c_msg *rdwr_pa;u8 __user **data_ptrs;int i, res;if (copy_from_user(&rdwr_arg,(struct i2c_rdwr_ioctl_data __user *)arg,sizeof(rdwr_arg)))return -EFAULT;/* Put an arbitrary limit on the number of messages that can* be sent at once */if (rdwr_arg.nmsgs > I2C_RDRW_IOCTL_MAX_MSGS)return -EINVAL;rdwr_pa = (struct i2c_msg *)kmalloc(rdwr_arg.nmsgs * sizeof(struct i2c_msg),GFP_KERNEL);if (!rdwr_pa)return -ENOMEM;if (copy_from_user(rdwr_pa, rdwr_arg.msgs,rdwr_arg.nmsgs * sizeof(struct i2c_msg))) {kfree(rdwr_pa);return -EFAULT;}data_ptrs = kmalloc(rdwr_arg.nmsgs * sizeof(u8 __user *), GFP_KERNEL);if (data_ptrs == NULL) {kfree(rdwr_pa);return -ENOMEM;}res = 0;for (i = 0; i < rdwr_arg.nmsgs; i++) {/* Limit the size of the message to a sane amount;* and don't let length change either. */if ((rdwr_pa[i].len > 8192) ||(rdwr_pa[i].flags & I2C_M_RECV_LEN)) {res = -EINVAL;break;}data_ptrs[i] = (u8 __user *)rdwr_pa[i].buf;rdwr_pa[i].buf = kmalloc(rdwr_pa[i].len, GFP_KERNEL);if (rdwr_pa[i].buf == NULL) {res = -ENOMEM;break;}if (copy_from_user(rdwr_pa[i].buf, data_ptrs[i],rdwr_pa[i].len)) {++i; /* Needs to be kfreed too */res = -EFAULT;break;}}if (res < 0) {int j;for (j = 0; j < i; ++j)kfree(rdwr_pa[j].buf);kfree(data_ptrs);kfree(rdwr_pa);return res;}res = i2c_transfer(client->adapter, rdwr_pa, rdwr_arg.nmsgs);while (i-- > 0) {if (res >= 0 && (rdwr_pa[i].flags & I2C_M_RD)) {if (copy_to_user(data_ptrs[i], rdwr_pa[i].buf,rdwr_pa[i].len))res = -EFAULT;}kfree(rdwr_pa[i].buf);}kfree(data_ptrs);kfree(rdwr_pa);return res;
}


先来分析这个函数的参数,参数有2个client和arg,client应该是需要操作的设备,arg则是需要读写的参数,这个参数首先被赋值给这个结构i2c_rdwr_ioctl_data

 

 

/* This is the structure as used in the I2C_RDWR ioctl call */
struct i2c_rdwr_ioctl_data {struct i2c_msg __user *msgs;	/* pointers to i2c_msgs */__u32 nmsgs;			/* number of i2c_msgs */
};


这里有2个成员,一个是消息指针,另一个是消息的数量。消息数量很好理解,我们看看消息指针的类型:

 

 

struct i2c_msg {__u16 addr;	/* slave address			*/__u16 flags;
#define I2C_M_TEN		0x0010	/* this is a ten bit chip address */
#define I2C_M_RD		0x0001	/* read data, from slave to master */
#define I2C_M_NOSTART		0x4000	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_REV_DIR_ADDR	0x2000	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_IGNORE_NAK	0x1000	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_NO_RD_ACK		0x0800	/* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_RECV_LEN		0x0400	/* length will be first received byte */__u16 len;		/* msg length				*/__u8 *buf;		/* pointer to msg data			*/
};

里面包含了设备的地址addr,flags(0为写,1为读)读写标志,消息的字节数,消息的数据指针。
 

 

接着来分析这个函数,做一些判断之后,接下来肯定就是读取消息数据了,它通过一个大循环for (i = 0; i < rdwr_arg.nmsgs; i++) 来读取参数里面的数据,然后使用i2c_transfer来传输这些数据。这个函数是属于i2c-croe里面的一个函数,但是这个函数并不会直接读写,而是找到挂载i2c总线上的适配器,通过设备器上面的算法来真正实现数据的传输。这个数据传输的线路和上面一节的数据流程图一摸一样。

 

因此对于用户态的i2c设备驱动编写就很明了了,首先需要构造一条i2c消息i2c_rdwr_ioctl_data,然后通过i2cdev_ioctl_rdrw函数把这些数据读写到设备中去。我们接下来就编写用户态下面i2c驱动程序的编写。

 

用户态驱动设计

我们先分析一下程序大概的流程:

 

1、打开通用的字符设备文件

依然是使用open打开设备文件,在开发板的/dev/下面我们可以找到一个叫做i2c-0的设备文件,我们以读写的方式打开这个设备文件

 

2、构造需要写入到EEPROM中的消息

我们首先需要赋值消息的定义到我们的程序中。即i2c_msg和i2c_rdwr_ioctl_data。可以把一些不需要的数据删掉。

然后定义一个消息结构,i2c_rdwr_ioctl_data eeprom_data,然后初始化这个结构(别忘了给指针分配空间)。特别要注意的是对应消息的数量读和写肯定是不一样的,因为对于写只需要一个消息,而对于读只需要2个消息,因为先做了一次写,然后在做了一次读。因此我们按最大的长度2,来给i2c_msg 分配空间。

接下来可以初始化写的消息,写的信息有2个字节,所以len=2,第一个是偏移地址,第二个是需要写入的数据。初始化后如下:

	eeprom_data.nmsgs = 1;  //写只有一条消息(eeprom_data.msgs) = (struct i2c_msg *)malloc(2 * sizeof(struct i2c_msg));(eeprom_data.msgs[0]).addr = 0x50;(eeprom_data.msgs[0]).flags = 0;(eeprom_data.msgs[0]).len = 2;(eeprom_data.msgs[0]).buf = (unsigned char *)malloc(2);(eeprom_data.msgs[0]).buf[0] = 0x10;//写入到EEPROM的偏移地址(eeprom_data.msgs[0]).buf[1] = 0x60;//写入到偏移地址的数据

 

 

3、使用ioctl写入数据

ioctl的第一个参数是fd,第二个参数是操作类型,这里是I2C_RDWR,我们需要拷贝I2C_RDWR到自己的程序中,第三个是参数就是eeprom_data了,我们在取地址之后需要进行类型转换,因为i2cdev_ioctl_rdrw的参数是unsigned long

 

4、构造从EEPROM读数据的消息

读消息的构造也类似,不过这里需要2个消息,第一个实现写,第二个实现读:

	//构造从EEPROM读数据的消息eeprom_data.nmsgs = 2;  //读有二条消息(eeprom_data.msgs[0]).addr = 0x50;//先写入需要开始读取的偏移地址,然后开始读(eeprom_data.msgs[0]).flags = 0;(eeprom_data.msgs[0]).len = 1;(eeprom_data.msgs[0]).buf[0] = 0x10;(eeprom_data.msgs[1]).addr = 0x50;(eeprom_data.msgs[1]).flags = 1;(eeprom_data.msgs[1]).len = 1;(eeprom_data.msgs[1]).buf = (unsigned char *)malloc(2);(eeprom_data.msgs[1]).buf[0] = 0;//先把读取缓冲清0

 

5、使用ioctl读出消息

ioctl(fd, I2C_RDWR, (unsigned long)&eeprom_data);

读取到的消息会保存在以buf[0]为起始地址的存储空间中。

6、关闭字符设备

很简单 close(fd)

 

最后,整体代码如下:

#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>#define I2C_RDWR	0x0707	/* Combined R/W transfer (one STOP only) */struct i2c_msg {unsigned short addr;	/* slave address			*/unsigned short flags;unsigned short len;		/* msg length				*/unsigned char *buf;		/* pointer to msg data			*/
};/* This is the structure as used in the I2C_RDWR ioctl call */
struct i2c_rdwr_ioctl_data {struct i2c_msg  *msgs;	/* pointers to i2c_msgs */unsigned long nmsgs;			/* number of i2c_msgs */
};int main()
{int fd=0;struct i2c_rdwr_ioctl_data eeprom_data;//打开字符设备文件fd = open("/dev/i2c-0", O_RDWR);//构造需要写入到EEPROM的消息eeprom_data.nmsgs = 1;  //写只有一条消息(eeprom_data.msgs) = (struct i2c_msg *)malloc(2 * sizeof(struct i2c_msg));(eeprom_data.msgs[0]).addr = 0x50;//I2C设备地址(eeprom_data.msgs[0]).flags = 0;//0为写,1为读(eeprom_data.msgs[0]).len = 2;//写入数据长度(eeprom_data.msgs[0]).buf = (unsigned char *)malloc(2);//申请2个字节(eeprom_data.msgs[0]).buf[0] = 0x10;//写入到EEPROM的偏移地址(eeprom_data.msgs[0]).buf[1] = 0x60;//写入到偏移地址的数据//使用ioctl把数据写入到EEPROM中ioctl(fd, I2C_RDWR, (unsigned long)&eeprom_data);//需要做类型转换,因为i2cdev_ioctl_rdrw的参数是unsigned long//构造从EEPROM读数据的消息eeprom_data.nmsgs = 2;  //读有二条消息(eeprom_data.msgs[0]).addr = 0x50;//先写入需要开始读取的偏移地址,然后开始读(eeprom_data.msgs[0]).flags = 0;(eeprom_data.msgs[0]).len = 1;(eeprom_data.msgs[0]).buf[0] = 0x10;(eeprom_data.msgs[1]).addr = 0x50;//然后开始读取数据,len的长度为1,表示读取数据的长度(eeprom_data.msgs[1]).flags = 1;(eeprom_data.msgs[1]).len = 1;(eeprom_data.msgs[1]).buf = (unsigned char *)malloc(2);(eeprom_data.msgs[1]).buf[0] = 0;//先把读取缓冲清0//使用ioctl读出消息ioctl(fd, I2C_RDWR, (unsigned long)&eeprom_data);printf("buf[0]:%x\n", (eeprom_data.msgs[1]).buf[0]);//关闭字符设备close(fd);return 0;
}

 

更多Linux资料及视频教程点击这里

 

 

这篇关于Linux-IIC驱动(3)-IIC用户态驱动程序设计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123176

相关文章

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

Linux命令rm如何删除名字以“-”开头的文件

《Linux命令rm如何删除名字以“-”开头的文件》Linux中,命令的解析机制非常灵活,它会根据命令的开头字符来判断是否需要执行命令选项,对于文件操作命令(如rm、ls等),系统默认会将命令开头的某... 目录先搞懂:为啥“-”开头的文件删不掉?两种超简单的删除方法(小白也能学会)方法1:用“--”分隔命