c++中的匿名对象及内存管理及模版初阶

2024-08-31 06:28

本文主要是介绍c++中的匿名对象及内存管理及模版初阶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

c++中的匿名对象

A a;//a的生命周期在整个main函数中
a.Sum(1);
//匿名对象生命周期只有一行,只有这一行会创建对象,出了这一行就会调析构
A().Sum(1);//只有这一行需要这个对象,其他地方不需要。
return 0;

日期到天数的转换 

计算日期到天数转换_牛客题霸_牛客网根据输入的日期,计算是这一年的第几天。 保证年份为4位数且日期合法。 进阶:时。题目来自【牛客题霸】icon-default.png?t=N7T8https://www.nowcoder.com/practice/769d45d455fe40b385ba32f97e7bcded?tpId=37&&tqId=21296&rp=1&ru=/activity/oj&qru=/ta/huawei/question-ranking

深入理解析构

#include <iostream>
#include <vector>
using namespace std;int main() {//vector<int> getMouthDays{0,31,28,31,30,31,30,31,31,30,31,30,31};static int getMouthDays[13] = { 0,31,28,31,30,31,30,31,31,30,31,30,31 };int year,mouth,day;while(cin>>year>>mouth>>day){int n=0;for(int i=1;i<mouth;++i){n+=getMouthDays[i];}n+=day;if(mouth>2&&((year%4==0&&year%100!=0)||(year%400==0)))n++;cout<<n<<endl;;}return 0;
}
// 64 位输出请用 printf("%lld")
C c;
int main()
{A a;B b;static D d;return 0;
}

构造顺序:C A B D

析构顺序:B A D C

static 修饰后(局部静态对象)第一次执行时才会调用构造 (初始化)。

全局的在main函数之前构造。

局部对象先析构,全局对象和静态对象在析构。

static D d;程序结束时才会销毁。

深入理解拷贝构造

 拷贝构造也是构造,写了拷贝构造编译器就不会生成构造了。

Widget v(u);
Widget w=v;

Widget w=v;

w存在:调operator赋值

w不存在:调拷贝构造

编译器不优化一个f(x) 调四次拷贝构造。最后共9次。

 内存管理

int globalVar = 1;static int staticGlobalVar = 1;void Test(){static int staticVar = 1;int localVar = 1;int num1[10] = {1, 2, 3, 4};char char2[] = "abcd";char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof (int)*4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int)*4);free (ptr1);free (ptr3);}

char2是一个5个字节的数组整个数组都存在栈上。

全局变量和static变量的区别;

 链接属性不同

int globalVar = 1;static int staticGlobalVar = 1;

 执行main函数前就完成初始化。

    static int staticVar = 1;

当前文件可见 

int globalVar = 1;

 所有文件可见

运行到这个位置就初始化。

int globalVar = 1;

malloc/calloc/realloc的区别

malloc:申请空间

calloc:申请空间+初始化为0

realloc:对以有的空间进行扩容

int* p1=new int(10);
int* p2=new int[10];delete p1;
delete[] p2;

new和delete的意义?

对于内置类型申请的效果是一样的

对于自定义类型来说有区别

A* a = new A;//申请空间+调构造函数初始化
A* a2 = (A*)malloc(sizeof(A));
cout << a->_a << endl;
cout << a2->_a << endl;

delete a;//释放空间+调析构函数

operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是系统提供的 全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局 函数来释放空间。

/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间失败,
尝试执行空 间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。
*/
void *__CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid *p;while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p);
}
 
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void *pUserData)
{_CrtMemBlockHeader * pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK); /* block other threads */__TRY/* get a pointer to memory block header */pHead = pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg( pUserData, pHead->nBlockUse );__FINALLY_munlock(_HEAP_LOCK); /* release other threads */__END_TRY_FINALLYreturn;
}/*
free的实现
*/
#define free(p) _free_dbg(p, _NORMAL_BLOCK)

对比malloc和new operator

    size_t size=2;void* p4=malloc(size*1024*1024*1024);cout<<p4<<endl;

malloc申请失败返回0

	try{void* p5=operator new(2*1024*1024*1024);cout<<p5<<endl;		}catch(exception& e){cout<<e.what()<<endl;}

使用方式一样处理错误方式不一样。

new operator更符合面向对象的方式。

 

 定制operator new 和 operator delete

void* operator new(size_t n){void* p = nullptr;p = allocator<ListNode>().allocate(1);cout << "memory pool allocate" << endl;return p;}void operator delete(void* p){allocator<ListNode>().deallocate((ListNode*)p, 1);cout << "memory pool deallocate" << endl;}
};

定位new/replacement new

对已经存在的一块空间调用构造函数初始化

	A* p2=(A*)operator new(sizeof(A));new(p2)A(10);p2->~A();operator delete(p2);

格式:new(空间指针)类型参数

int的范围 -2^31-2^32-1

申请4G空间

x64:

	size_t size=2;
//	void* p4=malloc(size*1024*1024*1024);
//	cout<<p4<<endl; 
//	try{char* p5= new char[2*1024*1024*1024];cout<<p5<<endl;		}catch(exception& e){cout<<e.what()<<endl;}

模版初阶 

函数模版 

目录

c++中的匿名对象

日期到天数的转换 

深入理解析构

深入理解拷贝构造

 内存管理

全局变量和static变量的区别;

malloc/calloc/realloc的区别

new和delete的意义?

operator new与operator delete函数

对比malloc和new operator

 定制operator new 和 operator delete

定位new/replacement new

模版初阶 

函数模版 


template<class T>
void Swap(T& x1,T&x2)
{T x=x1;x1=x2;x2=T;
}

我们不能调用函数模版,调用的是函数模版实例化生成的对应类型的函数

 预处理时生成。

 

 

 

这篇关于c++中的匿名对象及内存管理及模版初阶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123146

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess