基于Python的机器学习系列(16):扩展 - AdaBoost

2024-08-31 06:20

本文主要是介绍基于Python的机器学习系列(16):扩展 - AdaBoost,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。

1. 修复Alpha计算中的问题

        在AdaBoost中,如果分类器的错误率 e 为0,则计算出的权重 α 将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。

2. 调整学习率

    sklearn的AdaBoost实现中包含一个learning_rate参数,这实际上是1/2​在α计算中的一部分。我们将这个参数重命名为eta,并尝试不同的eta值,以观察其对模型准确性的影响。sklearn的默认值为1。

3. 自定义决策桩

    sklearn中的DecisionTreeClassifier使用加权基尼指数来评估分裂,而我们学到的是加权错误率。我们将实现一个自定义的DecisionStump类,它使用加权错误率来替代基尼指数。为了验证自定义桩的有效性,我们将检查其是否能够与sklearn的实现提供相似的准确性。需要注意的是,如果不将标签 y 更改为-1,准确性可能会非常差。

代码示例

        以下是扩展AdaBoost实现的代码示例:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.metrics import classification_report# 生成数据集
X, y = make_classification(n_samples=500, random_state=1)
y = np.where(y == 0, -1, 1)  # 将标签0转换为-1X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 自定义决策桩类
class DecisionStump():def __init__(self):self.polarity = 1self.feature_index = Noneself.threshold = Noneself.alpha = Nonedef fit(self, X, y, weights):m, n = X.shapemin_error = float('inf')for feature_index in range(n):feature_values = np.unique(X[:, feature_index])for threshold in feature_values:for polarity in [-1, 1]:predictions = np.ones(m)predictions[X[:, feature_index] < threshold] = -1predictions *= polarityerror = np.dot(weights, predictions != y)if error < min_error:min_error = errorself.polarity = polarityself.threshold = thresholdself.feature_index = feature_indexdef predict(self, X):predictions = np.ones(X.shape[0])if self.polarity == -1:predictions[X[:, self.feature_index] < self.threshold] = -1else:predictions[X[:, self.feature_index] >= self.threshold] = -1return predictions# 自定义AdaBoost类
class AdaBoost():def __init__(self, S=5, eta=0.5):self.S = Sself.eta = etadef fit(self, X, y):m, n = X.shapeW = np.full(m, 1/m)self.clfs = []for _ in range(self.S):clf = DecisionStump()clf.fit(X, y, W)predictions = clf.predict(X)error = np.dot(W, predictions != y)if error == 0:error = 1e-10  # 避免除零错误alpha = self.eta * 0.5 * np.log((1 - error) / error)clf.alpha = alphaW *= np.exp(alpha * (predictions != y))W /= np.sum(W)self.clfs.append(clf)def predict(self, X):clf_preds = np.zeros((X.shape[0], len(self.clfs)))for i, clf in enumerate(self.clfs):clf_preds[:, i] = clf.predict(X)return np.sign(np.dot(clf_preds, [clf.alpha for clf in self.clfs]))# 训练和评估自定义AdaBoost模型
ada_clf = AdaBoost(S=50, eta=0.5)
ada_clf.fit(X_train, y_train)
y_pred = ada_clf.predict(X_test)print("自定义AdaBoost模型的分类报告:")
print(classification_report(y_test, y_pred))

结语

        在本篇中,我们扩展了AdaBoost的实现,解决了计算中的潜在问题,并尝试了不同的学习率以优化模型性能。与决策树、Bagging和随机森林相比,AdaBoost通过加权组合多个弱分类器,能够进一步提高分类性能。决策树为基础分类器提供了简单有效的分裂方式,而AdaBoost则通过提升算法强化了模型的准确性。与Bagging和随机森林不同,AdaBoost侧重于通过关注分类错误的样本来提升弱分类器的性能,从而在许多复杂任务中表现出色。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(16):扩展 - AdaBoost的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123133

相关文章

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁