Redis缓存穿透、缓存击穿与缓存雪崩的详细讲解和案例示范

2024-08-31 05:28

本文主要是介绍Redis缓存穿透、缓存击穿与缓存雪崩的详细讲解和案例示范,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在高并发的电商交易系统中,Redis缓存的使用可以极大地提高系统的性能。然而,缓存机制也面临着一些挑战,尤其是缓存穿透、缓存击穿和缓存雪崩问题。这些问题如果处理不当,可能导致系统的性能大幅下降,甚至出现系统崩溃的情况。本文将详细介绍这些问题及其解决方案,并结合电商交易系统的案例进行示范,提供相应的代码示例。


第一章:Redis缓存穿透

1.1 缓存穿透的定义

缓存穿透是指用户请求的数据在缓存中不存在,并且在数据库中也不存在。由于缓存未命中,每次请求都会直接访问数据库,导致数据库压力骤增,最终可能导致系统崩溃。

1.2 缓存穿透的原因
  1. 用户恶意攻击:攻击者通过大量请求不存在的数据来绕过缓存,直接攻击数据库。
  2. 未正确设置缓存:对于数据库中不存在的值,未设置空缓存,导致每次查询都穿透到数据库。
1.3 解决方案
1.3.1 使用布隆过滤器

布隆过滤器是一种概率型数据结构,能够高效判断一个元素是否在一个集合中存在。布隆过滤器通过多个哈希函数将数据映射到位数组中,以达到快速判断的目的。虽然布隆过滤器存在一定的误判率,但它可以有效防止缓存穿透。

实现代码示例
public class BloomFilterService {private BloomFilter<String> bloomFilter;public BloomFilterService(int expectedInsertions, double fpp) {bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), expectedInsertions, fpp);}public void addToFilter(String key) {bloomFilter.put(key);}public boolean mightContain(String key) {return bloomFilter.mightContain(key);}
}
1.3.2 缓存空对象

对于数据库中不存在的数据,将空对象缓存起来,并设置较短的过期时间。这样可以避免大量查询穿透到数据库。

实现代码示例
public String getProductInfo(String productId) {String cacheKey = "product:" + productId;String productInfo = redisTemplate.opsForValue().get(cacheKey);if (productInfo != null) {return productInfo;}// 查询数据库Product product = productRepository.findById(productId);if (product == null) {// 数据库中不存在,缓存空值redisTemplate.opsForValue().set(cacheKey, "", 60, TimeUnit.SECONDS);return null;}// 存在,缓存数据redisTemplate.opsForValue().set(cacheKey, product.toString(), 10, TimeUnit.MINUTES);return product.toString();
}
1.3.3 图示

在这里插入图片描述

1.4 电商系统中的案例

在电商系统中,用户请求某个商品详情,而该商品可能已经下架或者从未存在。在这种情况下,通过使用布隆过滤器和缓存空对象,能够有效防止系统缓存穿透。


第二章:Redis缓存击穿

2.1 缓存击穿的定义

缓存击穿是指缓存中某个热点数据在到期失效的瞬间,有大量的并发请求同时访问该数据,由于缓存失效,这些请求都会穿透到数据库,导致数据库负载剧增,甚至可能导致系统崩溃。

2.2 缓存击穿的原因
  1. 高并发访问:某些热点数据由于频繁访问,可能在缓存失效的瞬间引发大量并发请求直接访问数据库。
  2. 缓存未提前续期:如果没有在缓存即将失效时提前续期,可能导致缓存击穿。
2.3 解决方案
2.3.1 使用互斥锁(分布式锁)

在高并发场景下,当缓存失效时,只有一个请求能够获取锁,其他请求需要等待,直到锁释放后才能访问数据库并更新缓存。

实现代码示例
public String getProductInfo(String productId) {String cacheKey = "product:" + productId;String productInfo = redisTemplate.opsForValue().get(cacheKey);if (productInfo != null) {return productInfo;}// 获取分布式锁String lockKey = "lock:product:" + productId;boolean isLock = redisTemplate.opsForValue().setIfAbsent(lockKey, "1", 5, TimeUnit.SECONDS);if (isLock) {try {// 查询数据库并更新缓存Product product = productRepository.findById(productId);redisTemplate.opsForValue().set(cacheKey, product.toString(), 10, TimeUnit.MINUTES);return product.toString();} finally {// 释放锁redisTemplate.delete(lockKey);}} else {// 如果没有获取到锁,稍后重试Thread.sleep(100);return getProductInfo(productId);}
}
2.3.2 提前续期

在缓存即将失效时,提前续期缓存数据,以防止缓存失效瞬间的大量并发请求击穿缓存。

实现代码示例
@Scheduled(fixedRate = 5000)
public void refreshHotKeys() {List<String> hotKeys = getHotKeys(); // 获取热点数据的缓存Keyfor (String key : hotKeys) {redisTemplate.expire(key, 10, TimeUnit.MINUTES); // 重新设置过期时间}
}
2.3.3 图示

在这里插入图片描述

2.4 电商系统中的案例

在电商系统中,某些热门商品如秒杀商品会被频繁访问。在缓存失效时,通过分布式锁和提前续期策略,可以有效防止缓存击穿问题。


第三章:Redis缓存雪崩

3.1 缓存雪崩的定义

缓存雪崩是指大量缓存数据在同一时间失效,导致大量请求同时穿透到数据库,造成数据库压力过大,可能导致系统不可用。

3.2 缓存雪崩的原因
  1. 缓存集中失效:由于缓存数据的过期时间设定不合理,大量缓存数据在同一时间失效,导致请求集中穿透到数据库。
  2. 系统重启:如果Redis服务因故障重启,可能导致大量缓存数据失效。
3.3 解决方案
3.3.1 缓存数据过期时间设置为随机值

通过为缓存数据设置随机的过期时间,避免大量缓存数据在同一时间失效。

实现代码示例
public void cacheProductInfo(String productId, String productInfo) {int expireTime = 10 + new Random().nextInt(5); // 随机生成10-15分钟的过期时间String cacheKey = "product:" + productId;redisTemplate.opsForValue().set(cacheKey, productInfo, expireTime, TimeUnit.MINUTES);
}
3.3.2 预热缓存

在系统上线或重启时,提前将热点数据加载到缓存中,防止大量请求瞬间击穿缓存。

实现代码示例
public void cachePreheat() {List<String> hotProductIds = productRepository.getHotProductIds();for (String productId : hotProductIds) {String productInfo = productRepository.findById(productId).toString();redisTemplate.opsForValue().set("product:" + productId, productInfo, 10, TimeUnit.MINUTES);}
}
3.3.3 图示

在这里插入图片描述

第四章:总结

通过本文的详细讲解,我们对Redis缓存穿透、缓存击穿和缓存雪崩三大问题有了深入的理解。我们使用布隆过滤器和缓存空对象来防止缓存穿透,通过分布式锁和提前续期防止缓存击穿,并通过设置随机过期时间和缓存预热来防止缓存雪崩。每种问题都有其特定的解决方案,通过这些解决方案,我们能够有效提高系统的稳定性和性能。

通过图示,我们直观地展示了这些解决方案的实现过程,这有助于更好地理解和应用这些技术。在实际的电商系统中,合理运用这些技术能够极大提升系统的抗压能力,确保在高并发场景下的稳定性。

希望这篇文章能为您在实际项目中处理Redis缓存问题提供有益的参考。

这篇关于Redis缓存穿透、缓存击穿与缓存雪崩的详细讲解和案例示范的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123007

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使