汽车加油行驶问题全网最详细(动态规划+画图)

2024-08-31 03:32

本文主要是介绍汽车加油行驶问题全网最详细(动态规划+画图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

给定一个N*N的网络,左上角记为起点S,坐标为(1,1),坐标轴方向及距离标识见图。一辆汽车从起点S出发驶向右下角终点(N,N)。在部分网格交叉点,设置了油库,可供汽车在行驶途中,为其加油。汽车在行驶途中需遵守如下规则:

  • 1.汽车只能沿着网格边行驶,装满油后只能行驶K条网格边。出发时已装满油,起点和终点不设油库
  • 2.当汽车行驶经过一条网格边时,若其X坐标或Y坐标减小,则需付费B,否则免付费用
  • 3.汽车行驶过程中若遇到油库,则需加满油并付油费A
  • 4.在需要时可在网格点增设油库,并付增设油库费用C(不含A)

5.以上N=9,K《3,A,B,C均为正整数,可自行设置数值(值不能相同)

https://i-blog.csdnimg.cn/blog_migrate/708164ff5921b1e88d43d469f119a62b.png ​​图1-1

求行驶到坐标(9,9)的费用最小

本题暂且输入参数 N = 9,K = 3,A = 2,B = 2,C = 1

动态规划原理:

       最优性原理:多阶段决策过程的最优决策序列具有如下性质:无论决策过程的初始状态和初始决策是什么,其余的决策都必须相对于初始决策所产生的当前状态,构成一个最优决策序列。

        图1-2

解题步骤

  1. 找递推表达式
  2. 填写递推表格

分析:

已知起点(1,1),终点(9,9),设(x,y)为当前汽车所到达的点,f是形为(9+1,9+1,2)的三维表(注释:9+1的原因是数组下标以0为起点,本题起点为(1,1)点,为了方便分析,引入占位符,数组下标从1开始计数,本文所有数组都以1为起点,后面不重复申明),path变量为(9+1,9+1,2)的三维表,用于保存行驶进入当前节点的前向节点表,用于路径回溯。

f[x][y][0]表示坐标(1,1)到坐标(x,y)汽车所花的最少费用

f[x][y][1]表示汽车行驶到坐标(x,y)后还能行驶的网格边数

最终总费用:即求f[N][N][0]

并最后通过path表回溯路径—》找到最短路径

 图 1-3

由图1-3可知汽车运动到蓝色的点,有四种运动方式,分别是从上到下,从左到右,从右到左,从下到上,需要找出的是,所花费用最少的点作为当前蓝色点的前向节点。设蓝色节点费用为g,则可得递推表达式

蓝色站点费用 g = 加油费用 或 (建立油站 加上 加油费用)

最小费用 f[x][y][0] = min(f[x-1][y][0]+g, f[x+1][y][0]+g, f[x][y-1][0]+g, f[x][y+1][0])

使用固定随机种子初始地图1-4(红色点表示加油站)

                 图1-4

用递推表达式填表并找规律(熟手可跳过此流程)

                                                        图1-5

import numpy as np
import random
from numpy.core.fromnumeric import reshape
import matplotlib.pyplot as pltrandom.seed(10)
INF = 10000#输入参数
def find_path_and_fee(N = 9, K = 3, A = 2, B = 2, C = 1):    seed = lambda : 1 if random.randint(0, 11) % 4 == 0 else 0grid = np.zeros((N + 1, N + 1), dtype = int)oil_x, oil_y = [], []for i in range(N):for j in range(N):grid[i+1][j+1] = seed()if grid[i+1][j+1] == 1:oil_x.append(i+1)oil_y.append(j+1)f = np.zeros((N + 1, N + 1, 2), dtype = int)for i in range(1, N+1):for j in range(1, N+1):f[i][j][0] = INFf[i][j][1] = K#4个方向s = [[-1, 0, 0], [0, -1, 0], [1, 0, B], [0, 1, B]]f[1][1][0], f[1][1][1] = 0, Ktempx, tempy = 0, 0path = np.zeros((N + 1, N + 1, 2), dtype= int)for x in range(1, N + 1):for y in range(1, N + 1):if x == 1 and y == 1: continueminmoney, minstep, tmpmoney, tmpstep = INF, 0, 0, 0for i in range(4):if x + s[i][0] < 1 or x + s[i][0] > N or y + s[i][1] < 1 or y + s[i][1] > N: continuetmpmoney = f[x+s[i][0]][y+s[i][1]][0] + s[i][2]tmpstep = f[x+s[i][0]][y+s[i][1]][1] - 1if grid[x][y] == 1: tmpmoney += Atmpstep = Kif grid[x][y] == 0 and tmpstep == 0 and (x != N or y != N):tmpmoney += A + Ctmpstep = Kif minmoney > tmpmoney:minmoney = tmpmoneyminstep = tmpsteptempx = x + s[i][0]tempy = y + s[i][1]if(f[x][y][0] > minmoney):f[x][y][0] = minmoneyf[x][y][1] = minsteppath[x][y][0] = tempxpath[x][y][1] = tempy#回溯找到最佳路径re_path_x, re_path_y = [], []x, y, tmp = N, N, 0while ((x != 1) or (y != 1)):re_path_x.append(x)re_path_y.append(y)tmp = xx = path[x][y][0]y = path[tmp][y][1]re_path_x.append(x)re_path_y.append(y)return N, oil_x, oil_y, re_path_x, re_path_y#绘制最佳路径图
def draw_pic(N, oil_x, oil_y, re_path_x, re_path_y):plt.grid(linestyle=":", color="r")ax = plt.gca()                       #获取到当前坐标轴信息ax.xaxis.set_ticks_position('top')   #将X坐标轴移到上面ax.invert_yaxis()                    #反转Y坐标轴plt.xticks([x for x in range(1, N+1)])plt.xlabel("x axis")plt.yticks([x for x in range(1, N+1)])plt.ylabel("y axis")plt.scatter(oil_x, oil_y, color="r", label="oil station")    plt.plot(re_path_x, re_path_y, ls="-.", lw=2, c="b", label="plot figure")plt.legend(loc="lower left")plt.show()N, oil_x, oil_y, re_path_x, re_path_y = find_path_and_fee()
draw_pic(N, oil_x, oil_y, re_path_x, re_path_y)

运行代码

绘制出最佳路径(蓝色虚线为最佳路径,红色点为加油站)

这篇关于汽车加油行驶问题全网最详细(动态规划+画图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122766

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据