汽车加油行驶问题全网最详细(动态规划+画图)

2024-08-31 03:32

本文主要是介绍汽车加油行驶问题全网最详细(动态规划+画图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

给定一个N*N的网络,左上角记为起点S,坐标为(1,1),坐标轴方向及距离标识见图。一辆汽车从起点S出发驶向右下角终点(N,N)。在部分网格交叉点,设置了油库,可供汽车在行驶途中,为其加油。汽车在行驶途中需遵守如下规则:

  • 1.汽车只能沿着网格边行驶,装满油后只能行驶K条网格边。出发时已装满油,起点和终点不设油库
  • 2.当汽车行驶经过一条网格边时,若其X坐标或Y坐标减小,则需付费B,否则免付费用
  • 3.汽车行驶过程中若遇到油库,则需加满油并付油费A
  • 4.在需要时可在网格点增设油库,并付增设油库费用C(不含A)

5.以上N=9,K《3,A,B,C均为正整数,可自行设置数值(值不能相同)

https://i-blog.csdnimg.cn/blog_migrate/708164ff5921b1e88d43d469f119a62b.png ​​图1-1

求行驶到坐标(9,9)的费用最小

本题暂且输入参数 N = 9,K = 3,A = 2,B = 2,C = 1

动态规划原理:

       最优性原理:多阶段决策过程的最优决策序列具有如下性质:无论决策过程的初始状态和初始决策是什么,其余的决策都必须相对于初始决策所产生的当前状态,构成一个最优决策序列。

        图1-2

解题步骤

  1. 找递推表达式
  2. 填写递推表格

分析:

已知起点(1,1),终点(9,9),设(x,y)为当前汽车所到达的点,f是形为(9+1,9+1,2)的三维表(注释:9+1的原因是数组下标以0为起点,本题起点为(1,1)点,为了方便分析,引入占位符,数组下标从1开始计数,本文所有数组都以1为起点,后面不重复申明),path变量为(9+1,9+1,2)的三维表,用于保存行驶进入当前节点的前向节点表,用于路径回溯。

f[x][y][0]表示坐标(1,1)到坐标(x,y)汽车所花的最少费用

f[x][y][1]表示汽车行驶到坐标(x,y)后还能行驶的网格边数

最终总费用:即求f[N][N][0]

并最后通过path表回溯路径—》找到最短路径

 图 1-3

由图1-3可知汽车运动到蓝色的点,有四种运动方式,分别是从上到下,从左到右,从右到左,从下到上,需要找出的是,所花费用最少的点作为当前蓝色点的前向节点。设蓝色节点费用为g,则可得递推表达式

蓝色站点费用 g = 加油费用 或 (建立油站 加上 加油费用)

最小费用 f[x][y][0] = min(f[x-1][y][0]+g, f[x+1][y][0]+g, f[x][y-1][0]+g, f[x][y+1][0])

使用固定随机种子初始地图1-4(红色点表示加油站)

                 图1-4

用递推表达式填表并找规律(熟手可跳过此流程)

                                                        图1-5

import numpy as np
import random
from numpy.core.fromnumeric import reshape
import matplotlib.pyplot as pltrandom.seed(10)
INF = 10000#输入参数
def find_path_and_fee(N = 9, K = 3, A = 2, B = 2, C = 1):    seed = lambda : 1 if random.randint(0, 11) % 4 == 0 else 0grid = np.zeros((N + 1, N + 1), dtype = int)oil_x, oil_y = [], []for i in range(N):for j in range(N):grid[i+1][j+1] = seed()if grid[i+1][j+1] == 1:oil_x.append(i+1)oil_y.append(j+1)f = np.zeros((N + 1, N + 1, 2), dtype = int)for i in range(1, N+1):for j in range(1, N+1):f[i][j][0] = INFf[i][j][1] = K#4个方向s = [[-1, 0, 0], [0, -1, 0], [1, 0, B], [0, 1, B]]f[1][1][0], f[1][1][1] = 0, Ktempx, tempy = 0, 0path = np.zeros((N + 1, N + 1, 2), dtype= int)for x in range(1, N + 1):for y in range(1, N + 1):if x == 1 and y == 1: continueminmoney, minstep, tmpmoney, tmpstep = INF, 0, 0, 0for i in range(4):if x + s[i][0] < 1 or x + s[i][0] > N or y + s[i][1] < 1 or y + s[i][1] > N: continuetmpmoney = f[x+s[i][0]][y+s[i][1]][0] + s[i][2]tmpstep = f[x+s[i][0]][y+s[i][1]][1] - 1if grid[x][y] == 1: tmpmoney += Atmpstep = Kif grid[x][y] == 0 and tmpstep == 0 and (x != N or y != N):tmpmoney += A + Ctmpstep = Kif minmoney > tmpmoney:minmoney = tmpmoneyminstep = tmpsteptempx = x + s[i][0]tempy = y + s[i][1]if(f[x][y][0] > minmoney):f[x][y][0] = minmoneyf[x][y][1] = minsteppath[x][y][0] = tempxpath[x][y][1] = tempy#回溯找到最佳路径re_path_x, re_path_y = [], []x, y, tmp = N, N, 0while ((x != 1) or (y != 1)):re_path_x.append(x)re_path_y.append(y)tmp = xx = path[x][y][0]y = path[tmp][y][1]re_path_x.append(x)re_path_y.append(y)return N, oil_x, oil_y, re_path_x, re_path_y#绘制最佳路径图
def draw_pic(N, oil_x, oil_y, re_path_x, re_path_y):plt.grid(linestyle=":", color="r")ax = plt.gca()                       #获取到当前坐标轴信息ax.xaxis.set_ticks_position('top')   #将X坐标轴移到上面ax.invert_yaxis()                    #反转Y坐标轴plt.xticks([x for x in range(1, N+1)])plt.xlabel("x axis")plt.yticks([x for x in range(1, N+1)])plt.ylabel("y axis")plt.scatter(oil_x, oil_y, color="r", label="oil station")    plt.plot(re_path_x, re_path_y, ls="-.", lw=2, c="b", label="plot figure")plt.legend(loc="lower left")plt.show()N, oil_x, oil_y, re_path_x, re_path_y = find_path_and_fee()
draw_pic(N, oil_x, oil_y, re_path_x, re_path_y)

运行代码

绘制出最佳路径(蓝色虚线为最佳路径,红色点为加油站)

这篇关于汽车加油行驶问题全网最详细(动态规划+画图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122766

相关文章

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到