汽车加油行驶问题全网最详细(动态规划+画图)

2024-08-31 03:32

本文主要是介绍汽车加油行驶问题全网最详细(动态规划+画图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

给定一个N*N的网络,左上角记为起点S,坐标为(1,1),坐标轴方向及距离标识见图。一辆汽车从起点S出发驶向右下角终点(N,N)。在部分网格交叉点,设置了油库,可供汽车在行驶途中,为其加油。汽车在行驶途中需遵守如下规则:

  • 1.汽车只能沿着网格边行驶,装满油后只能行驶K条网格边。出发时已装满油,起点和终点不设油库
  • 2.当汽车行驶经过一条网格边时,若其X坐标或Y坐标减小,则需付费B,否则免付费用
  • 3.汽车行驶过程中若遇到油库,则需加满油并付油费A
  • 4.在需要时可在网格点增设油库,并付增设油库费用C(不含A)

5.以上N=9,K《3,A,B,C均为正整数,可自行设置数值(值不能相同)

https://i-blog.csdnimg.cn/blog_migrate/708164ff5921b1e88d43d469f119a62b.png ​​图1-1

求行驶到坐标(9,9)的费用最小

本题暂且输入参数 N = 9,K = 3,A = 2,B = 2,C = 1

动态规划原理:

       最优性原理:多阶段决策过程的最优决策序列具有如下性质:无论决策过程的初始状态和初始决策是什么,其余的决策都必须相对于初始决策所产生的当前状态,构成一个最优决策序列。

        图1-2

解题步骤

  1. 找递推表达式
  2. 填写递推表格

分析:

已知起点(1,1),终点(9,9),设(x,y)为当前汽车所到达的点,f是形为(9+1,9+1,2)的三维表(注释:9+1的原因是数组下标以0为起点,本题起点为(1,1)点,为了方便分析,引入占位符,数组下标从1开始计数,本文所有数组都以1为起点,后面不重复申明),path变量为(9+1,9+1,2)的三维表,用于保存行驶进入当前节点的前向节点表,用于路径回溯。

f[x][y][0]表示坐标(1,1)到坐标(x,y)汽车所花的最少费用

f[x][y][1]表示汽车行驶到坐标(x,y)后还能行驶的网格边数

最终总费用:即求f[N][N][0]

并最后通过path表回溯路径—》找到最短路径

 图 1-3

由图1-3可知汽车运动到蓝色的点,有四种运动方式,分别是从上到下,从左到右,从右到左,从下到上,需要找出的是,所花费用最少的点作为当前蓝色点的前向节点。设蓝色节点费用为g,则可得递推表达式

蓝色站点费用 g = 加油费用 或 (建立油站 加上 加油费用)

最小费用 f[x][y][0] = min(f[x-1][y][0]+g, f[x+1][y][0]+g, f[x][y-1][0]+g, f[x][y+1][0])

使用固定随机种子初始地图1-4(红色点表示加油站)

                 图1-4

用递推表达式填表并找规律(熟手可跳过此流程)

                                                        图1-5

import numpy as np
import random
from numpy.core.fromnumeric import reshape
import matplotlib.pyplot as pltrandom.seed(10)
INF = 10000#输入参数
def find_path_and_fee(N = 9, K = 3, A = 2, B = 2, C = 1):    seed = lambda : 1 if random.randint(0, 11) % 4 == 0 else 0grid = np.zeros((N + 1, N + 1), dtype = int)oil_x, oil_y = [], []for i in range(N):for j in range(N):grid[i+1][j+1] = seed()if grid[i+1][j+1] == 1:oil_x.append(i+1)oil_y.append(j+1)f = np.zeros((N + 1, N + 1, 2), dtype = int)for i in range(1, N+1):for j in range(1, N+1):f[i][j][0] = INFf[i][j][1] = K#4个方向s = [[-1, 0, 0], [0, -1, 0], [1, 0, B], [0, 1, B]]f[1][1][0], f[1][1][1] = 0, Ktempx, tempy = 0, 0path = np.zeros((N + 1, N + 1, 2), dtype= int)for x in range(1, N + 1):for y in range(1, N + 1):if x == 1 and y == 1: continueminmoney, minstep, tmpmoney, tmpstep = INF, 0, 0, 0for i in range(4):if x + s[i][0] < 1 or x + s[i][0] > N or y + s[i][1] < 1 or y + s[i][1] > N: continuetmpmoney = f[x+s[i][0]][y+s[i][1]][0] + s[i][2]tmpstep = f[x+s[i][0]][y+s[i][1]][1] - 1if grid[x][y] == 1: tmpmoney += Atmpstep = Kif grid[x][y] == 0 and tmpstep == 0 and (x != N or y != N):tmpmoney += A + Ctmpstep = Kif minmoney > tmpmoney:minmoney = tmpmoneyminstep = tmpsteptempx = x + s[i][0]tempy = y + s[i][1]if(f[x][y][0] > minmoney):f[x][y][0] = minmoneyf[x][y][1] = minsteppath[x][y][0] = tempxpath[x][y][1] = tempy#回溯找到最佳路径re_path_x, re_path_y = [], []x, y, tmp = N, N, 0while ((x != 1) or (y != 1)):re_path_x.append(x)re_path_y.append(y)tmp = xx = path[x][y][0]y = path[tmp][y][1]re_path_x.append(x)re_path_y.append(y)return N, oil_x, oil_y, re_path_x, re_path_y#绘制最佳路径图
def draw_pic(N, oil_x, oil_y, re_path_x, re_path_y):plt.grid(linestyle=":", color="r")ax = plt.gca()                       #获取到当前坐标轴信息ax.xaxis.set_ticks_position('top')   #将X坐标轴移到上面ax.invert_yaxis()                    #反转Y坐标轴plt.xticks([x for x in range(1, N+1)])plt.xlabel("x axis")plt.yticks([x for x in range(1, N+1)])plt.ylabel("y axis")plt.scatter(oil_x, oil_y, color="r", label="oil station")    plt.plot(re_path_x, re_path_y, ls="-.", lw=2, c="b", label="plot figure")plt.legend(loc="lower left")plt.show()N, oil_x, oil_y, re_path_x, re_path_y = find_path_and_fee()
draw_pic(N, oil_x, oil_y, re_path_x, re_path_y)

运行代码

绘制出最佳路径(蓝色虚线为最佳路径,红色点为加油站)

这篇关于汽车加油行驶问题全网最详细(动态规划+画图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122766

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

全网最全Tomcat完全卸载重装教程小结

《全网最全Tomcat完全卸载重装教程小结》windows系统卸载Tomcat重新通过ZIP方式安装Tomcat,优点是灵活可控,适合开发者自定义配置,手动配置环境变量后,可通过命令行快速启动和管理... 目录一、完全卸载Tomcat1. 停止Tomcat服务2. 通过控制面板卸载3. 手动删除残留文件4.

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造