用矩阵乘法的底层原理来理解“特征融合”

2024-08-31 03:28

本文主要是介绍用矩阵乘法的底层原理来理解“特征融合”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好啊,我是董董灿。

在很多 AI 模型中,都会出现内积运算。无论是卷积/全连接还是 Transformer 架构中的矩阵乘法(或线性映射),其核心运算逻辑都是内积运算。

因此,很多时候,我们也把内积运算称作是一种“特征提取和融合运算”。

那么如何来理解这种“特征提取和融合”呢?

本文就用一个非常通俗的矩阵乘法的例子,让你来理解这个过程。

矩阵运算的本质

先看一个调酒的例子,我在很多场合都会用这个例子来讲解“特征提取”的作用。

假如你是一个鸡尾酒调酒师,家里储存了很多鸡尾酒的原料,有金酒、利口酒、柠檬汁和可乐等等。

今天家里来了 3 位客人,他们分别喜欢喝“自由古巴”、“长岛冰茶”以及“龙舌兰日出”这 3 款鸡尾酒,并向你下了单,希望你给他们调配出来各自喜欢的鸡尾酒。

巧的是,这 3 款鸡尾酒的原料都是金酒、利口酒、柠檬汁和可乐。

你作为一个调酒师,很快就把客人的爱好的鸡尾酒给调出来了。

你是怎么做的呢?你知道配方:

  • 自由古巴: 20%金酒 + 45% 利口酒 + 10%柠檬汁 + 25%可乐

  • 长岛冰茶: 60%金酒+ 30%利口酒 + 5% 柠檬汁 + 5% 可乐

  • 龙舌兰日出:30%金酒 + 10%利口酒 + 30%柠檬汁 + 30%可乐

你在调配鸡尾酒的过程中,是按照这个配方来调配的。

这里的原料,比如利口酒和可乐,就是输入资源,配比(比如可乐的 25% )就是赋予该资源的权重

将相同的原料按照不同的配比混合起来,就得到了不同口味的鸡尾酒。

这种做法,可以抽象一下,写成一个公式:

  • 自由古巴 = 0.2 x 金酒 + 0.45 x 利口酒 + 0.1 x 柠檬汁 + 0.25 x 可乐

  • 长岛冰茶 = 0.6 x 金酒 + 0.3 x 利口酒 + 0.05 x 柠檬汁 + 0.05 x 可乐

  • 龙舌兰日出 = 0.3 x 金酒 + 0.1 x 利口酒 + 0.3 x 柠檬汁 + 0.3 x 可乐

我们知道矩阵乘法的规则是,左矩阵的第一行乘以右矩阵的第一列,得到第一个值,第一行乘以第二列得到第二个值,...,以此类推。

上面这种连乘的操作,就可以用矩阵乘法来表示。

图片

左矩阵是一行四列,代表原料。

右矩阵是四行三列,每一列代表对应原料的配比。

按照矩阵乘法的规则,他们的结果应该是一个一行三列的矩阵,分别代表调配出来的三种鸡尾酒。

看到这是不是有点熟悉了。

矩阵乘法,通过相乘再累加的操作,实际上是对资源(鸡尾酒的原料)的整合和再创(创造出了新的口味,如自由古巴)。

也就是说,如果矩阵乘法的一个矩阵是权值矩阵,就可以把矩阵乘法理解为:对输入资源的一种提取和融合操作。

而在AI神经网络中,输入资源可以认为是特征,因此,在 AI 算法中,类似的矩阵乘法运算,都是对特征进行的提取和融合。

是不是好理解一些了呢?

与之对应的,卷积运算和全连接运算,即核心逻辑都是以权值和输入进行乘法,然后累加的操作,与上述类似。

因此,卷积可以提取输入资源的特征(大部分是图像),全连接也可以提取输入资源的特征。


🍊 专栏:计算机视觉入门与调优

🍊 专栏:Transformer 通关秘籍

🍓 计算机视觉入门1对1全程

🍓 从零手写大模型1对1全程

最后,送一句话给大家:生活不止眼前,还有诗和远方,共勉~

这篇关于用矩阵乘法的底层原理来理解“特征融合”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122755

相关文章

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

HTML5 中的<button>标签用法和特征

《HTML5中的<button>标签用法和特征》在HTML5中,button标签用于定义一个可点击的按钮,它是创建交互式网页的重要元素之一,本文将深入解析HTML5中的button标签,详细介绍其属... 目录引言<button> 标签的基本用法<button> 标签的属性typevaluedisabled

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建