今年读过最绝的一本书!《自然语言处理原理、方法与应用》,几乎把自然语言处理讲透了【附PDF】

本文主要是介绍今年读过最绝的一本书!《自然语言处理原理、方法与应用》,几乎把自然语言处理讲透了【附PDF】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

书籍内容介绍:

本书系统阐述自然语言处理基础知识,以及自然语言处理高级模型应用等高级知识。 全书共11章:第1~5章为自然语言处理的基础知识,第6~11章将自然语言处理知识应用于实战。书中主要内容包括预训练模型、文本分类、机器阅读理解、命名实体识别、文本生成、模型蒸馏与剪枝及损失函数等知识。 书中包含大量应用示例,不仅可以学会理论知识还可以灵活应用。书中示例基于Linux与PyTorch环境开发,读者在学习自然语言处理知识的同时还可学会PyTorch框架技术,内容完整、步骤清晰,提供了工程化的解决方案。

适读人群:

本书可作为有一定深度学习基础的读者的入门书,也可作为从事自然语言处理算法工作的技术人员及培训机构的参考书。
在这里插入图片描述
PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:《自然语言处理原理、方法与应用》免费分享(安全链接,放心点击)]👈

书籍目录:

第1章 导论(13min)

1.1基于深度学习的自然语言处理

1.2本书章节脉络

1.3自然语言处理算法流程

1.4小结

第2章 Python开发环境配置(35min)

2.1Linux服务器

2.1.1MobaXterm

2.1.2使用MobaXterm连接远程服务器

2.1.3在服务器上安装Python开发环境

2.1.4使用Anaconda国内源

2.1.5pip设定永久阿里云源

2.2Python虚拟环境

2.3PyCharm远程连接服务器

2.4screen任务管理

2.5Docker技术

2.6小结

第3章 自然语言处理的发展进程

3.1人工规则与自然语言处理

3.2机器学习与自热语言处理

3.2.1词袋模型

3.2.2ngram

3.2.3频率与逆文档频率

3.3深度学习与自然语言处理

3.4小结

第4章 无监督学习的原理与应用(30min)

4.1浅层无监督预训练模型

4.2深层无监督预训练模型

4.2.1BERT

4.2.2SelfAttention Layer原理

4.2.3SelfAttention Layer的内部运算逻辑

4.2.4MultiHead SelfAttention

4.2.5Layer Normalization

4.2.6BERT预训练

4.2.7BERT的微调过程

4.3其他预训练模型

4.3.1RoBERTa

4.3.2ERNIE

4.3.3BERT_WWM

4.3.4ALBERT

4.3.5Electra

4.3.6NEZHA

4.3.7NLP预训练模型对比

4.4自然语言处理四大下游任务

4.4.1句子对分类任务

4.4.2单句子分类任务

4.4.3问答任务

4.4.4单句子标注任务

4.5小结

第5章 无监督学习进阶

5.1生成式对抗网络

5.2元学习

5.2.1MetricBased Method

5.2.2ModelBased Method

5.2.3PretrainBased Method

5.3小结

第6章 预训练

6.1赛题任务

6.2环境搭建

6.3代码框架

6.4数据分析实践

6.4.1数据预处理

6.4.2预训练任务模型构建与数据生成

6.4.3模型训练

6.5小结

第7章 文本分类(45min)

7.1数据分析

7.2环境搭建

7.3代码框架

7.4文本分类实践

7.4.1数据预处理

7.4.2模型构建

7.4.3数据迭代器

7.4.4模型训练

7.4.5模型预测

7.5小结

第8章 机器阅读理解(16min)

8.1机器阅读理解的定义

8.1.1完形填空

8.1.2多项选择

8.1.3片段抽取

8.1.4自由回答

8.1.5其他任务

8.2评测方法

8.3研究方法

8.3.1基于规则的方法

8.3.2基于神经网络的方法

8.3.3基于深层语义的图匹配方法

8.4经典结构

8.4.1BiDAF模型

8.4.2QANet模型

8.4.3基于BERT模型的机器阅读理解

8.5多文档机器阅读理解实践

8.5.1疫情政务问答助手

8.5.2信息检索

8.5.3多任务学习

8.5.4实践

8.6小结

第9章 命名实体识别(15min)

9.1NER技术的发展现状

9.2命名实体识别的定义

9.3命名实体识别模型

9.3.1预训练模型

9.3.2下接结构

9.3.3条件随机场

9.4命名实体识别实验

9.4.1数据介绍

9.4.2评估指标

9.4.3数据预处理

9.4.4模型构建

9.4.5数据迭代器

9.4.6模型训练

9.4.7模型预测

9.5小结

第10章 文本生成(26min)

10.1文本生成的发展现状

10.1.1文本生成模板

10.1.2变分自编码器

10.1.3序列到序列技术

10.2基于预训练模型的文本生成模型

10.3文本生成任务实践

10.3.1数据介绍

10.3.2评估指标

10.3.3模型构建

10.3.4数据迭代器

10.3.5模型训练

10.3.6模型预测

10.4小结

第11章 损失函数与模型瘦身

11.1损失函数

11.2常用的损失函数

11.2.1回归

11.2.2分类

11.3损失函数的进阶

11.3.1样本不均衡

11.3.2Focal Loss

11.3.3Dice Loss

11.3.4拒识

11.3.5带噪学习

11.4模型瘦身

11.4.1知识蒸馏

11.4.2模型剪枝

11.5小结 [2]

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这本大模型《自然语言处理原理、方法与应用》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:《自然语言处理原理、方法与应用》免费分享(安全链接,放心点击)]👈

这篇关于今年读过最绝的一本书!《自然语言处理原理、方法与应用》,几乎把自然语言处理讲透了【附PDF】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122464

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本