深度学习论文被评“创新性不足、工作量不够”怎么办?

2024-08-30 22:28

本文主要是介绍深度学习论文被评“创新性不足、工作量不够”怎么办?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

投稿时遇到审稿人提出文章创新性不足、工作量不够,该怎么办?

今天我就来分享三种应对方法:下采样策略、归一化策略、改进网络模型。

改进网络模型

增加创新性:

从模型架构和训练策略这两方面入手:

模型架构创新:常见的方法有缝合其他网络、引入注意力、轻量化等,缝合网络加注意力在我之前的文章里详细说过,这边就不多说了。

轻量化策略就是对网络架构的重新设计或优化,比如深度可分离替换一般的3*3卷积,前提是精度不能损失太多,而且模型大小或者推理速度能显著提高。

训练策略创新:通过优化训练策略来提升模型性能也能增加创新性,我们可以选择多任务学习、添加辅助损失。

多任务学习能同时学习多个相关任务,在训练过程中直接应用。比如CV方向如果做的是检测,就可以加个分割任务,用分割促检测,具体点就是将分割网络与检测网络共享主干网络,让网络前面部分的参数提前得到有效训练。

这部分如果细说可以有15种方法,不过我建议大家直接看论文,如果不想花时间找可以直接拿我已经整理好了,15种多任务学习方法共84篇参考论文。

论文原文+开源代码需要的同学看文末

辅助损失可以作为正则化项,帮助模型在训练过程中保持稳定的梯度流,同时迫使中间层学习有用的特征表示,比如深度监督,参考yolov9相对yolov7的改进。

增加工作量:

既然要设计新的模型,那现有方法的优缺点得了解吧,还有新模型的实现细节,比如选择合适的模块、确定模块之间的连接方式、设计损失函数等。

再加上在不同数据集上的测试、与现有方法的对比以及消融实验等。另外还需要根据实验结果对模型参数进行调优,找到最优,这个过程基本都要反复多次。

下采样

增加创新性:

可以考虑新的下采样策略,比如自适应下采样、金字塔池化,这类方法能减少特征图的尺寸和计算量,保留更多的有用信息,比平均池化等老方法更有创新性。

另外还可以考虑拓展新的下采样方法的应用场景,比如图像分类、目标检测之类,通过跨领域的应用来增加创新点。

只看文字可能有些难get,大家可以搭配我准备好的下采样高质量paper合集来理解,这些论文都可以直接参考,而且全都有代码,复现搞起。

论文原文+开源代码需要的同学看文末

举其中一篇论文案例:

AutoFocusFormer: Image Segmentation off the Grid

采用自适应下采样和局部注意力机制,专注于图像中更重要的区域,以提高分割任务的性能。

增加工作量:

现有下采样模块的优缺点,还有新方法的实现细节,比如合适的卷积核大小、步长、池化方式等参数,另外还要有大量的实验来验证效果,工作量这不就来了。

还有评估,引入新的下采样后,需要全面评估它的性能,比如在不同数据集上的测试、与现有方法的比较还有消融实验。

归一化

增加创新性:

从技术出发,着眼于归一化技术细节上的优化,就是怎么使用更复杂的归一化函数、结合领域知识的归一化策略,给模型带来性能提升。

从理论出发,探讨它对模型性能的影响机制,再通过实验验证提的这些理论分析的正确性,就可以有理论上的创新了。

另外还有引入新的归一化方法或策略,比如批归一化、组归一化、实例归一化等,这些新的归一化方法本身就是创新点。

这边我也整理好了归一化相关的参考paper合集帮助大家更直观的理解,开源代码也都有。

论文原文+开源代码需要的同学看文末

也举其中一篇论文案例:

BCN: Batch Channel Normalization for Image Classification

批量通道归一化,通过分别沿着(N, H, W)和(C, H, W)轴进行归一化处理,基于自适应参数组合归一化输出,同时利用通道和批量维度的优势,提高神经网络的泛化性能。

增加工作量:

归一化方法中的参数,比如批归一化中的衰减率和动量,对模型性能影响很大,所以需要对这些参数进行细致的调优,分析不同参数设置对模型稳定性和性能的影响。

再加上验证方法有效性的实验设计,包括选择合适的基准数据集、设计对比实验、评估不同归一化方法的性能指标等,工作量不用愁。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“创新工作”获取全部论文+开源代码

码字不易,欢迎大家点赞评论收藏

这篇关于深度学习论文被评“创新性不足、工作量不够”怎么办?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122104

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷