损失函数、成本函数cost 、最大似然估计

2024-08-30 21:04

本文主要是介绍损失函数、成本函数cost 、最大似然估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、损失函数

什么是损失函数?

【深度学习】一文读懂机器学习常用损失函数(Loss Function)-腾讯云开发者社区-腾讯云

损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:

LogLoss对数损失函数

Sigmoid 和softmax 函数以及交叉熵损失logloss_关于sigmoid函数是连续的-CSDN博客

平方损失函数MSE

最小二乘法是线性回归的一种。最小二乘法(OLS)将问题转化成了一个凸优化问题。

案例:

假设我们有一组数据点进行回归预测:

  • 实际值(真实值)y: 10, 20, 30
  • 预测值 y^​: 12, 18, 29

  残差 {10-12=-2,20-18=2,30-29=1}

MES=1/3(-2*-2  +2 *2 +1*1 )=9/3=3 

这个值越小表示拟合的越好

>> % 实际值
y = [10, 20, 30];% 预测值
y_hat = [12, 18, 29];% 计算平方损失
square_loss = (y - y_hat).^2;% 显示每个数据点的平方损失
disp('每个数据点的平方损失:');
disp(square_loss);% 计算均方误差(MSE)
mse = mean(square_loss);% 显示均方误差
disp('均方误差(MSE):');
disp(mse);
每个数据点的平方损失:4     4     1均方误差(MSE):3>> 

指数损失函数

特点

  1. 对错误预测的惩罚:如果预测值 y^\hat{y}y^​ 与实际标签 yyy 不符,损失函数的值会显著增加。
  2. 指数增长:损失函数的值随着预测错误的程度(即 y⋅y^y \cdot \hat{y}y⋅y^​ 负值)指数级增长,强调了模型对错分类样本的关注。

案例:

假设你正在使用 AdaBoost 算法进行分类任务。你有一个实际标签 yyy 和一个预测值 y^\hat{y}y^​,需要计算对应的指数损失。

示例数据

% 定义实际标签和预测值
y = 1;       % 实际标签
y_hat = -0.8; % 预测值% 计算指数损失
exponential_loss = exp(-y * y_hat);% 显示结果
disp('指数损失函数的值:');
disp(exponential_loss);

 案例2:

% MATLAB 计算指数损失函数示例% 实际标签和预测值
y = [1, -1, 1, -1];     % 实际标签(示例)
y_hat = [-0.8, 0.5, -1, 0.2]; % 预测值(示例)% 计算每个样本的指数损失
exponential_loss = exp(-y .* y_hat);% 显示每个样本的指数损失
disp('每个样本的指数损失函数值:');
disp(exponential_loss);% 计算平均指数损失(如果需要)
mean_exponential_loss = mean(exponential_loss);
disp('平均指数损失函数值:');
disp(mean_exponential_loss);

 

Hinge损失函数(SVM) 

Hinge 损失函数(Hinge Loss Function)主要用于支持向量机(SVM)等分类任务,特别是在二分类问题中。它用于衡量分类器的预测结果与实际标签之间的差距,特别是在数据点被正确分类时,如何进一步推动模型在边界上的决策能力

定义

Hinge 损失函数的公式为:

 案例一

% 定义实际标签和预测值
y = 1;       % 实际标签
y_hat = 0.5; % 预测值% 计算 Hinge 损失
hinge_loss = max(0, 1 - y * y_hat);% 显示结果
disp('Hinge 损失函数的值:');
disp(hinge_loss);

 案例二

% 定义实际标签和预测值
y = [1, -1, 1, -1];     % 实际标签
y_hat = [0.5, -0.3, 1.2, -0.8]; % 预测值% 计算每个样本的 Hinge 损失
hinge_loss = max(0, 1 - y .* y_hat);% 显示每个样本的 Hinge 损失
disp('每个样本的 Hinge 损失函数值:');
disp(hinge_loss);% 计算平均 Hinge 损失(如果需要)
mean_hinge_loss = mean(hinge_loss);
disp('平均 Hinge 损失函数值:');
disp(mean_hinge_loss);

二、成本函数 

代价函数是用来衡量整个训练集上预测输出与实际输出之间的误差的函数。代价函数通常是由损失函数对整个训练集上的样本进行求和或平均得到的

三、最大似然估计

四、有无监督学习

有监督学习(Supervised Learning)和无监督学习(Unsupervised Learning)是机器学习中的两个基本类别,它们主要通过以下方式区分:

有监督学习(Supervised Learning)

定义:有监督学习是指在训练模型时,使用的训练数据包括输入数据和对应的目标输出(标签)。模型通过学习这些输入输出对来进行预测或分类。

特点

  • 标签数据训练数据集中每个样本都有一个对应的标签或目标值
  • 目标:从输入数据和标签中学习到一个映射函数,能够对新的、未见过的数据进行准确预测或分类。
  • 应用场景:分类(如垃圾邮件检测、人脸识别)和回归(如房价预测、温度预测)任务。

常见算法

  • 分类算法:逻辑回归、支持向量机(SVM)、决策树、随机森林、k近邻(k-NN)、神经网络等。
  • 回归算法:线性回归、岭回归、LASSO回归等。

示例

  • 分类:通过大量标记为“猫”或“狗”的图片来训练一个模型,以便能对新的图片进行分类。
  • 回归:利用历史房价数据来训练一个模型,预测未来某个地区的房价。

无监督学习(Unsupervised Learning)

定义:无监督学习是指在训练模型时,使用的训练数据只有输入数据,没有对应的目标输出(标签)。模型通过分析数据中的结构、模式或特征来进行学习。

特点

  • 无标签数据:训练数据集中没有任何标签或目标值
  • 目标:发现数据中的潜在结构、模式、群体或特征,无需事先了解目标输出。
  • 应用场景:聚类(如客户细分)、降维(如特征选择)、异常检测(如欺诈检测)等任务。

常见算法

  • 聚类算法:k均值(k-means)、层次聚类(Hierarchical Clustering)、DBSCAN等。
  • 降维算法:主成分分析(PCA)、t-SNE(t-Distributed Stochastic Neighbor Embedding)、线性判别分析(LDA)等。
  • 异常检测:孤立森林(Isolation Forest)、一类支持向量机(One-Class SVM)等。

示例

  • 聚类:对顾客进行分群,以便理解不同顾客群体的行为特征。
  • 降维:将高维数据(如图像数据)降到低维度,以便进行可视化或进一步分析。

总结

  • 有监督学习:利用带标签的数据来训练模型,目标是预测或分类。
  • 无监督学习:利用无标签的数据来发现数据中的模式或结构,目标是探索数据的内在特征。

理解这些区别可以帮助你选择合适的机器学习方法,根据任务的需求和数据的特性来应用相应的算法。

这篇关于损失函数、成本函数cost 、最大似然估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121926

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http