Pyspark中的ROW对象使用

2024-08-30 18:04
文章标签 使用 对象 pyspark row

本文主要是介绍Pyspark中的ROW对象使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Pyspark中的ROW对象使用
    • Row对象介绍
    • Row对象创建
    • 使用Row对象创建DataFrame
    • DataFrame转换为row对象
    • Row对象包含的方法
      • asDict()
      • count()
      • index()

Pyspark中的ROW对象使用

Row对象介绍

在PySpark中,Row对象是DataFrame的基本组成单元,它封装了DataFrame中的每一行数据。每行数据以Row对象的形式存在,其中包含了该行的各个字段值。这些字段值可以像属性一样被访问,使得处理数据变得更加直观和方便。Row对象的创建和使用,使得PySpark能够以更加结构化的方式处理数据,提高了数据处理效率和便利性。

Row对象创建

from pyspark import SparkSession,Row
from pyspark import SparkContext,SparkConfconf = SparkConf()
conf.setAppName('ldsx_create_rdd')
conf.setMaster('local[*]')# 初始化对象
spark = SparkSession.builder.config(conf=conf).getOrCreate()#创建Row对象
fields = ["name", "age", "height"]
schema = Row(*fields)
data1 = schema('ldsx',18,183)
#print内容
Row(name='ldsx', age=18, height=183)#可以直接通过属性访问
data1.name
# 可以通过索引访问
data1[0]

使用Row对象创建DataFrame

Row对象是DataFrame的基本组成单元

# 创建包含row对象的列表
row_list = [schema(1,2,3),schema(2,3,4),schema('ldsx',3,4)]
# 打印信息
>>[Row(name=1, age=2, height=3), Row(name=2, age=3, height=4), Row(name='ldsx', age=3, height=4)]
# 使用row对象创建dataframe
df_1 = spark.createDataFrame(row_list)
df_1.show()
'''
+----+---+------+
|name|age|height|
+----+---+------+
|   1|  2|     3|
|   2|  3|     4|
|ldsx|  3|     4|
+----+---+------+
'''

DataFrame转换为row对象

# 拉去数据到dirver端,在生产中慎用collect
df_1.rdd.collect()
>>[Row(name='Alice', age=25, score=None), Row(name='Bob', age=None, score=30), Row(name='John', age=35, score=40)]
# 可以在map中进行处理 lambda 可以换成专门处理方法,这个传入lambda的x就是row对象
df.rdd.map(lambda x:print(x)).count() #count作用触发map

Row对象包含的方法

asDict()

转换成字典

from pyspark import SparkSession,Row
from pyspark import SparkContext,SparkConf
#创建Row对象
data2 = Row(name='ldsx2', age=18, height=183)#row对象转换dict结构
data1.asDict()
#输出内容
>>{'name': 'ldsx2', 'age': 18, 'height': 183}#row对象中包含row对象 使用True参数内部也会转换
Row(ldsx=1, val=Row(name='a', age=2)).asDict()
>>{'ldsx': 1, 'val': Row(name='a', age=2)}
Row(ldsx=1, val=Row(name='a', age=2)).asDict(True) #True内部也转换
>>{'ldsx': 1, 'val': {'name': 'a', 'age': 2}}

count()

统计值出现的次数

# count只能统计外层值 这种值为Row对象的里面如果值存在1 也不会统计
Row(ldsx=1, val=Row(name='a', age=1),ldsx3=1).count(1) 
#返回值为1的个数
>>2

index()

index(value[, start, stop])

类似python list中index方法
value:要查询的值
start :查找的起始位置 可选
stop:查找的结束位置 可选

#row对象里面值row对象不查询
Row(ldsx=1, val=Row(ldsx=1, age=1),ldsx3=1,ldsx4=1).index(1,1,5)
#返回搜索索引范围1~5中值为1的索引编号
>>2# 查找不存在的元素报错,通过报错也可知index方法是吧row对象当成了一个tuple进行查询的
'''
Row(ldsx=1, val=Row(ldsx=1, age=1),ldsx3=1,ldsx4=1).index(9,1,5)
Traceback (most recent call last):File "/home/ldsx/down_load/pycharm_data/pycharm-community-2024.2/plugins/python-ce/helpers/pydev/_pydevd_bundle/pydevd_exec2.py", line 3, in Execexec(exp, global_vars, local_vars)File "<input>", line 1, in <module>
ValueError: tuple.index(x): x not in tuple
'''
#所以我们肯定也可以使用索引位置进行row对象内的元素访问如
data1 = Row(ldsx=1, val=Row(ldsx=1, age=1),ldsx3=1,ldsx4=1)
data1[0]
#返回
>>1

这篇关于Pyspark中的ROW对象使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121540

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND