机器学习/数据分析案例---糖尿病预测

2024-08-30 16:20

本文主要是介绍机器学习/数据分析案例---糖尿病预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

前言

  • 这是一篇数据分析/机器学习很好的入门案例,对糖尿病的影响进行预测和分析
  • 通过随机森林预测,平均准确率和召回率都达到了0.94
  • 不足:没有对特性进行特征提取,算法没有运用多个

文章目录

  • 1、导入数据
  • 2、数据预处理
  • 3、数据分析
    • 相关性分析
  • 5、模型创建
    • 1、数据集划分
    • 2、模型的创建
    • 模型预测
  • 6、模型评估
  • 7、特征重要性展示
  • 8、总结

1、导入数据

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt data = pd.read_excel('dia.xls')
data
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
0180544210381.252.991.070.645.31838304.99243.35010
1180544220311.151.990.840.503.98856304.72391.04710
2180544230271.292.210.690.604.19736105.87325.75110
3180544240330.932.010.660.843.60836002.40203.24020
4180544250361.172.830.830.734.83856704.09236.84300
...................................................
1001202611821861.583.811.111.676.50927308.60406.29311
1002202611920671.484.561.312.597.35768604.00262.55931
1003202612011671.302.900.841.615.041037504.70393.69831
1004202612130461.212.310.671.344.19788403.80219.25121
1005202612370361.122.801.153.595.0710211305.70462.46711

1006 rows × 16 columns

2、数据预处理

# 查看数据信息
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1006 entries, 0 to 1005
Data columns (total 16 columns):#   Column      Non-Null Count  Dtype  
---  ------      --------------  -----  0   卡号          1006 non-null   int64  1   性别          1006 non-null   int64  2   年龄          1006 non-null   int64  3   高密度脂蛋白胆固醇   1006 non-null   float644   低密度脂蛋白胆固醇   1006 non-null   float645   极低密度脂蛋白胆固醇  1006 non-null   float646   甘油三酯        1006 non-null   float647   总胆固醇        1006 non-null   float648   脉搏          1006 non-null   int64  9   舒张压         1006 non-null   int64  10  高血压史        1006 non-null   int64  11  尿素氮         1006 non-null   float6412  尿酸          1006 non-null   float6413  肌酐          1006 non-null   int64  14  体重检查结果      1006 non-null   int64  15  是否糖尿病       1006 non-null   int64  
dtypes: float64(7), int64(9)
memory usage: 125.9 KB
# 查看缺失值
data.isnull().sum()
卡号            0
性别            0
年龄            0
高密度脂蛋白胆固醇     0
低密度脂蛋白胆固醇     0
极低密度脂蛋白胆固醇    0
甘油三酯          0
总胆固醇          0
脉搏            0
舒张压           0
高血压史          0
尿素氮           0
尿酸            0
肌酐            0
体重检查结果        0
是否糖尿病         0
dtype: int64

绘制纸箱图

# 通过绘制箱型图,判断是否存在异常值
import seaborn as sns 
#设置字体
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]  # 显示中文
plt.rcParams['axes.unicode_minus'] = False		# 显示负号feature_name = {'性别': '性别','年龄': '年龄','高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇','低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇','极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇','甘油三酯': '甘油三酯','总胆固醇': '总胆固醇','脉搏': '脉搏','舒张压': '舒张压','高血压史': '高血压史','尿素氮': '尿素氮','肌酐': '肌酐','体重检查结果': '体重检查结果','是否糖尿病': '是否糖尿病'
}plt.figure(figsize=(20, 20))for i, (col, col_name) in enumerate(feature_name.items(), 1):plt.subplot(4, 4, i)sns.boxplot(y=data[col])plt.title(f'{col_name}的纸箱图', fontsize=14)plt.ylabel('数值', fontsize=12)plt.grid(axis='y', linestyle='--', alpha=0.7)plt.tight_layout()
plt.show()

在这里插入图片描述

参考值(正常)

  • 高密度脂蛋白胆固醇:0.83-1.96 mmol/L
  • 总胆固醇(TC)或(CHOL)参考范围:3~5.2 mmol/L
  • 甘油三酯(TG) 参考范围:0~1.7 mmol/L
  • 低密度脂蛋白(LDL-C)参考范围:0~3.12 mmol/L

分析(查阅一点资料决定的)

  • 低密度脂蛋白胆固醇,高于8的去除
  • 极低密度脂蛋白胆固醇,高于8的去除
  • 甘油三酯,高于40去除
  • 总胆固醇,高于12的删除
  • 肌酐,800(>790)的删除
  • 尿素氮,>15删除

写代码运行发现
发现全部删去了,这里假设以上情况均属于偶然,均存在,因为生病情况受到影响因素很复杂

分析

  • 影响特征的大量数均分布在中位数附件,比较平均于对称

3、数据分析

# 统计分析
data.describe()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
count1.006000e+031006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.000000
mean1.838279e+070.59841050.2882701.1522012.7074750.9983111.8967204.85762480.81908576.8866800.1739565.562684339.34542764.1063621.6093440.444334
std6.745088e+050.49046416.9214870.3134260.8480700.7158912.4214031.02997312.54227012.7631730.3792601.64634284.56984629.3384370.7723270.497139
min1.805442e+070.00000020.0000000.4200000.8400000.1400000.3500002.41000041.00000045.0000000.0000002.210000140.80000030.0000000.0000000.000000
25%1.807007e+070.00000037.2500000.9200002.1000000.6800000.8800004.20000072.00000067.0000000.0000004.450000280.85000051.2500001.0000000.000000
50%1.807036e+071.00000050.0000001.1200002.6800000.8500001.3350004.78500079.00000076.0000000.0000005.340000333.00000062.0000002.0000000.000000
75%1.809726e+071.00000060.0000001.3200003.2200001.0900002.0875005.38000088.00000085.0000000.0000006.367500394.00000072.0000002.0000001.000000
max2.026124e+071.00000093.0000002.5000007.98000011.26000045.84000012.610000135.000000119.0000001.00000018.640000679.000000799.0000003.0000001.000000

主要是老年人居多

相关性分析

注意:seaborn绘制热力图的时候,版本需要与matplotlib版本配对,matplotlib版本需要在3.8.0以下

# 相关性分析
import seaborn as sns data.drop(columns=['卡号'], inplace=True)plt.figure(figsize=(20, 15))   
sns.heatmap(data.corr(),annot=True)plt.show()


在这里插入图片描述

除了高密度脂蛋白胆固醇外,其他均成正相关

5、模型创建

1、数据集划分

from sklearn.model_selection import train_test_split
# 划分特征值和目标值
X = data.drop(['是否糖尿病', '高密度脂蛋白胆固醇'], axis=1)  # 高密度脂蛋白胆固醇: 与目标值负相关
y = data['是否糖尿病']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2、模型的创建

from sklearn.tree import DecisionTreeClassifier# 创建模型与训练
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

模型预测

y_pred = model.predict(X_test)

6、模型评估

from sklearn.metrics import classification_reportreporter = classification_report(y_test, y_pred)
print(reporter)
              precision    recall  f1-score   support0       0.81      0.78      0.80       1201       0.70      0.73      0.71        82accuracy                           0.76       202macro avg       0.75      0.76      0.76       202
weighted avg       0.76      0.76      0.76       202

准确率、召回率、f1得分很高,模型效果极好

7、特征重要性展示

feature_importances = model.feature_importances_
features_rf = pd.DataFrame({'特征': X.columns, '重要度': feature_importances})
features_rf.sort_values(by='重要度', ascending=False, inplace=True)
plt.figure(figsize=(6, 5))
sns.barplot(x='重要度', y='特征', data=features_rf)
plt.xlabel('重要度')
plt.ylabel('特征')
plt.title('随机森林特征图')
plt.show()


在这里插入图片描述

8、总结

  1. 环境:seaborn绘制热力图的时候,版本需要与matplotlib版本配对,matplotlib版本需要在3.8.0以下
  2. 随机森林:可以决解多重共线性问题
  3. 进一步熟悉了数据分析的过程
  4. 不足:算法的扩展性、数据特征提取没有做

这篇关于机器学习/数据分析案例---糖尿病预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121319

相关文章

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程