EmguCV学习笔记 C# 8.3 Grabcut法

2024-08-30 10:20

本文主要是介绍EmguCV学习笔记 C# 8.3 Grabcut法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。

教程VB.net版本请访问:EmguCV学习笔记 VB.Net 目录-CSDN博客

教程C#版本请访问:EmguCV学习笔记 C# 目录-CSDN博客

笔者的博客网址:https://blog.csdn.net/uruseibest

教程配套文件及相关说明以及如何获得pdf教程和代码,请移步:EmguCV学习笔记

学习VB.Net知识,请移步: vb.net 教程 目录_vb中如何用datagridview-CSDN博客

 学习C#知识,请移步:C# 教程 目录_c#教程目录-CSDN博客

 

8.3 Grabcut法

GrabCut是一种基于图像分割的技术,它可以用于将图像中的前景和背景分离。在实现中,GrabCut算法通常需要使用高斯混合模型(GMM)来建立前景和背景的概率分布,以便更好的估计像素的标签。同时,还需要考虑如何处理边界处的像素,以避免边界处的像素被错误地分类。GrabCut算法在图像分割中有着广泛的应用,例如人像分割、物体抠图等。

EmguCV使用CvInvoke.GrabCut方法来执行GrabCut算法,该方法声明如下:

public static void GrabCut(

           IInputArray img,

                    IInputOutputArray mask,

                    Rectangle rect,

                    IInputOutputArray bgdModel,

                    IInputOutputArray fgdModel,

                    int iterCount,

           GrabcutInitType type

)

参数说明:

  1. img:输入输出的图像,必须是三通道彩色图像。
  2. mask:指定的掩码图像,必须是单通道灰度图像,并且与输入图像具有相同的尺寸。可以传入0-3的值,分别为:0表示明显为背景的像素、1表示冥相位前景的像素、2表示可能为背景的像素、3表示可能为前景的像素。
  3. rect:指定的矩形框,用于定位大概率可能为前景目标的位置。
  4. bgdModel:背景模型,必须是单通道浮点型Mat。
  5. fgdModel:前景模型,必须是单通道浮点型Mat。
  6. iterCount:迭代次数,用于控制算法的收敛性。
  7. type:GrabCut算法初始化类型,可以选择GrabCutInitType.WithRect或GrabCutInitType.WithMask,分别表示根据提供的矩形初始化或根据掩码初始化。

该方法没有返回值,而是直接在mask图像上进行前景分割操作,最终获得的mask包含0-3的值,含义如参数中说明。

【代码位置:frmChapter8】Button5_Click

        //Grabcut

        private void Button5_Click(object sender, EventArgs e)

        {

            Mat m = new Mat("C:\\learnEmgucv\\tower.jpg", ImreadModes.AnyColor);

            Mat result = new Mat();

            Mat bg = new Mat();

            Mat fg = new Mat();

            Rectangle rect = new Rectangle(80, 30, 680, 450);

            CvInvoke.GrabCut(m, result, rect, bg, fg, 1, GrabcutInitType.InitWithRect);

            //输出的result只有4个值:

            //0:确定背景

            //1:确定前景

            //2:可能背景

            //3:可能前景

            //演示框选范围

            CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);

            ImageBox1.Image = m;

            //标记区域

            Matrix<byte> matr = new Matrix<byte>(result.Rows, result.Cols);

            result.CopyTo(matr);

            for (int i = 0; i < matr.Cols; i++)

            {

                for (int j = 0; j < matr.Rows; j++)

                {

                    //将确定背景和可能背景标记为0,否则为255

                    if (matr[j, i] == 0 || matr[j, i] == 2)

                        matr[j, i] = 0;

                    else

                        matr[j, i] = 255;

                }

            }

            Mat midm = new Mat();

            midm = matr.Mat;

            //显示标记的图像

            CvInvoke.Imshow("midm", midm);

            //灰度转为彩色

            Mat midm1 = new Mat();

            CvInvoke.CvtColor(midm, midm1, ColorConversion.Gray2Bgr);

            Mat mout = new Mat();

            //And运算

            CvInvoke.BitwiseAnd(m, midm1, mout);

            CvInvoke.Imshow("mout", mout);

        }

输出结果如下图所示:

 

图8-5 Grabcut法分离前景

【代码位置:frmChapter8】Button6_Click

       //Grabcut

        private void Button6_Click(object sender, EventArgs e)

        {

            Mat m = CvInvoke.Imread("C:\\learnEmgucv\\tower.jpg", ImreadModes.Color);

            Mat result = new Mat();

            Mat bg = new Mat();

            Mat fg = new Mat();

            Rectangle rect = new Rectangle(80, 30, 680, 450);

            CvInvoke.GrabCut(m, result, rect, bg, fg, 5, GrabcutInitType.InitWithRect);

            Image<Bgr, byte> src = m.ToImage<Bgr, byte>();

            Image<Bgr, byte> dst = new Image<Bgr, byte>(new Size(src.Width, src.Height));

            Image<Gray, byte> mask = result.ToImage<Gray, byte>();

            //直接操作Image像素点

            for (int i = 0; i < src.Rows; i++)

            {

                for (int j = 0; j < src.Cols; j++)

                {

                    //如果是确定前景和可能前景,直接保留原像素点颜色,否则为黑色

                    if (mask.Data[i, j, 0] == 1 || mask.Data[i, j, 0] == 3)

                    {

                        dst.Data[i, j, 0] = src.Data[i, j, 0];

                        dst.Data[i, j, 1] = src.Data[i, j, 1];

                        dst.Data[i, j, 2] = src.Data[i, j, 2];

                    }

                    else

                    {

                        dst.Data[i, j, 0] = 0;

                        dst.Data[i, j, 1] = 0;

                        dst.Data[i, j, 2] = 0;

                    }

                }

            }

            ImageBox1.Image = dst;

        }

输出结果如下图所示:

 

图8-6 Grabcut法分离前景

【代码位置:frmChapter8】Button7_Click

        //标记为确定前景,这里使用InitWithMask 参数

        private void Button7_Click(object sender, EventArgs e)

        {

            Mat m = new Mat("c:\\learnEmgucv\\lena.jpg", ImreadModes.AnyColor);

            Mat mask = new Mat();

            Mat bg = new Mat();

            Mat fg = new Mat();

            Rectangle rect = new Rectangle(80, 30, 340, 480);

            //使用前景为全白色

            Mat m1 = new Mat("c:\\learnEmgucv\\lena_fillwhite.jpg", ImreadModes.Grayscale);

            Mat mask1 = new Mat();

            //二值化

            CvInvoke.Threshold(m1, mask1, 250, 1, ThresholdType.Binary);

            CvInvoke.Rectangle(m, rect, new MCvScalar(255, 255, 255), 1);

            //标记之后再调用GrabCut,使用InitWithMask参数

            CvInvoke.GrabCut(m, mask1, rect, bg, fg, 2, GrabcutInitType.InitWithMask);

            Matrix<byte> matrx = new Matrix<byte>(mask1.Rows, mask1.Cols);

            mask1.CopyTo(matrx);

            for (int i = 0; i < matrx.Cols; i++)

                for (int j = 0; j < matrx.Rows; j++)

                    if (matrx[i, j] == 0 || matrx[i, j] == 2)

                        matrx[i, j] = 0;

                    else

                        matrx[i, j] = 255;

            Mat midm2 = new Mat();

            midm2 = matrx.Mat;

            Mat midm1 = new Mat();

            CvInvoke.CvtColor(midm2, midm1, ColorConversion.Gray2Bgr);

            Mat mout = new Mat();

            CvInvoke.BitwiseAnd(m, midm1, mout);

            CvInvoke.Imshow("mout", mout);

        }

输出结果如下图所示:

 

图8-7 Grabcut法分离前景

这篇关于EmguCV学习笔记 C# 8.3 Grabcut法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120542

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅