优化TextRank文本摘要,自定义关键词增加句子的权重

本文主要是介绍优化TextRank文本摘要,自定义关键词增加句子的权重,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于textRank的原理,我这边就不多介绍了,搜一下很多,我也不确定自己是否讲的有那些大佬清楚,我们主要关注在优化点

痛点:

最近在做文章的摘要项目,一天的摘要量估计在300万篇左右,所以直接放弃了seq2seq的生成时摘要方法,主要还是使用深度学习,速度和精度都达不到要求了。采用textrank是一种解决办法

1. 目前使用FastTextRank, 速度上基本达到了要求,

github链接:https://github.com/ArtistScript/FastTextRank

2. 但是我们自己的项目中需求点还有一个,就是很相近的文章需要生成不同的摘要。由于我们自己的文章主要是介绍产品的,所以一篇文章中可能每段的侧重点都不一样,可能是不同的产品。

所以需要对FastTextRank 进行改进

 

改进点:

直接来看代码:

from FastTextRank.FastTextRank4Sentence import FastTextRank4Sentence
import timetext = """麻省理工学院的研究团队为无人机在仓库中使用RFID技术进行库存查找等工作,创造了一种聪明的新方式。它允许公司使用更小,更安全的无人机在巨型建筑物中找到之前无法找到的东西。
使用RFID标签更换仓库中的条形码,将帮助提升自动化并提高库存管理的准确性。与条形码不同,RFID标签不需要对准扫描,标签上包含的信息可以更广泛和更容易地更改。它们也可以很便宜,尽管有优点,但是它具有局限性,对于跟踪商品没有设定RFID标准,“标签冲突”可能会阻止读卡器同时从多个标签上拾取信号。扫描RFID标签的方式也会在大型仓库内引起尴尬的问题。固定的RFID阅读器和阅读器天线只能扫描通过设定阈值的标签,手持式读取器需要人员出去手动扫描物品。
几家公司已经解决了无人机读取RFID的技术问题。配有RFID读卡器的无人机可以代替库存盘点的人物,并以更少的麻烦更快地完成工作。一个人需要梯子或电梯进入的高箱,可以通过无人机很容易地达到,无人机可以被编程为独立地导航空间,并且他们比执行大规模的重复任务的准确性和效率要比人类更好。
目前市场上的RFID无人机需要庞大的读卡器才能连接到无人机的本身。这意味着它们必须足够大,以支持附加硬件的尺寸和重量,使其存在坠机风险。麻省理工学院的新解决方案,名为Rfly,允许无人机阅读RFID标签,而不用捆绑巨型读卡器。相反,无人机配备了一个微小的继电器,它像Wi-Fi中继器一样。无人机接收从远程RFID读取器发送的信号,然后转发它读取附近的标签。由于继电器很小,这意味着可以使用更小巧的无人机,可以使用塑料零件,可以适应较窄的空间,不会造成人身伤害的危险。
麻省理工学院的Rfly系统本质上是对现有技术的一个聪明的补充,它不仅消除了额外的RFID读取器,而且由于它是一个更轻的解决方案,允许小型无人机与大型无人机做同样的工作。研究团队正在马萨诸塞州的零售商测试该系统。
"""
key_words = ["无人机"]
mod = FastTextRank4Sentence(use_w2v=False, use_stopword=True,max_iter=100, tol=0.0001,stop_words_file="stopwords.txt")
print("加载完成")
old_time =time.time()
print(mod.summarize(text, 5, key_words))
print(time.time() - old_time)

FastTextRank 直接调用summarize()方法即可进行测试,我这边没有采用word2vec的方式,word2vec需要自己整理语料,前期先不做。

代码中有个变量就是key_words, 输入的是关键词的集合

然后在summarize()中传入

 

FastTextRank4Sentence.py:

def summarize(self,text,n, key_words):text = text.replace('\n', '')text = text.replace('\r', '')text = util.as_text(text)#处理编码问题tokens=util.cut_sentences(text)#sentences用于记录文章最原本的句子,sents用于各种计算操作sentences, sents=util.cut_filter_words(tokens,self.__stop_words,self.__use_stopword)# 改进,如果包含关键词,加大权重weigth_sentences = []for _sentence in sentences:k = 0.5for _key_word in key_words:if _key_word in _sentence:if len(_key_word) < len(sentences):k += len(sentences) // len(key_words)else:k += 1weigth_sentences.append(k)if self.__use_w2v:sents = self.filter_dictword(sents)graph = self.create_graph_sentence(sents,self.__use_w2v)scores = util.weight_map_rank(graph,self.__max_iter,self.__tol, weigth_sentences)sent_selected = nlargest(n, zip(scores, count()))sent_index = []for i in range(n):sent_index.append(sent_selected[i][1])  # 添加入关键词在原来文章中的下标return [sentences[i] for i in sent_index], sent_index

在summarize()方法中,先统计出关键词在句子中是否出现,出现一次初始权重加一次。添加的规则就是, 当句子中出现了一个关键词,权重 +  len(sentences)÷ len(key_words), sentences 表示分好的句子的集合

看图,在weight_map_rank() 中,我们将初始化好的权重传入

 

util.py:

 

def weight_map_rank(weight_graph,max_iter,tol, weigth_sentences):'''输入相似度的图(矩阵)返回各个句子的分数:param weight_graph::return:'''# 初始分数设置为0.5#初始化每个句子的分子和老分数# scores = [0.5 for _ in range(len(weight_graph))]scores= weigth_sentencesold_scores = [0.0 for _ in range(len(weight_graph))]denominator = caculate_degree(weight_graph)# 开始迭代count=0while different(scores, old_scores,tol):for i in range(len(weight_graph)):old_scores[i] = scores[i]#计算每个句子的分数for i in range(len(weight_graph)):scores[i] = calculate_score(weight_graph,denominator, i) + scores[i]count+=1if count>max_iter:breakreturn scores

主要改变有2个地方:

第一个地方在

我们将socres 的初始化使用我们自己的权重

 

第二个地方:

 

计算scores和的时候,将初始化的权重加上

 

OK。完成

思想很简单,改动也很简单,效果有待验证,欢迎大家指正。

这篇关于优化TextRank文本摘要,自定义关键词增加句子的权重的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1120198

相关文章

如何自定义一个log适配器starter

《如何自定义一个log适配器starter》:本文主要介绍如何自定义一个log适配器starter的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求Starter 项目目录结构pom.XML 配置LogInitializer实现MDCInterceptor

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

CentOS7增加Swap空间的两种方法

《CentOS7增加Swap空间的两种方法》当服务器物理内存不足时,增加Swap空间可以作为虚拟内存使用,帮助系统处理内存压力,本文给大家介绍了CentOS7增加Swap空间的两种方法:创建新的Swa... 目录在Centos 7上增加Swap空间的方法方法一:创建新的Swap文件(推荐)方法二:调整Sww

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依