优化TextRank文本摘要,自定义关键词增加句子的权重

本文主要是介绍优化TextRank文本摘要,自定义关键词增加句子的权重,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于textRank的原理,我这边就不多介绍了,搜一下很多,我也不确定自己是否讲的有那些大佬清楚,我们主要关注在优化点

痛点:

最近在做文章的摘要项目,一天的摘要量估计在300万篇左右,所以直接放弃了seq2seq的生成时摘要方法,主要还是使用深度学习,速度和精度都达不到要求了。采用textrank是一种解决办法

1. 目前使用FastTextRank, 速度上基本达到了要求,

github链接:https://github.com/ArtistScript/FastTextRank

2. 但是我们自己的项目中需求点还有一个,就是很相近的文章需要生成不同的摘要。由于我们自己的文章主要是介绍产品的,所以一篇文章中可能每段的侧重点都不一样,可能是不同的产品。

所以需要对FastTextRank 进行改进

 

改进点:

直接来看代码:

from FastTextRank.FastTextRank4Sentence import FastTextRank4Sentence
import timetext = """麻省理工学院的研究团队为无人机在仓库中使用RFID技术进行库存查找等工作,创造了一种聪明的新方式。它允许公司使用更小,更安全的无人机在巨型建筑物中找到之前无法找到的东西。
使用RFID标签更换仓库中的条形码,将帮助提升自动化并提高库存管理的准确性。与条形码不同,RFID标签不需要对准扫描,标签上包含的信息可以更广泛和更容易地更改。它们也可以很便宜,尽管有优点,但是它具有局限性,对于跟踪商品没有设定RFID标准,“标签冲突”可能会阻止读卡器同时从多个标签上拾取信号。扫描RFID标签的方式也会在大型仓库内引起尴尬的问题。固定的RFID阅读器和阅读器天线只能扫描通过设定阈值的标签,手持式读取器需要人员出去手动扫描物品。
几家公司已经解决了无人机读取RFID的技术问题。配有RFID读卡器的无人机可以代替库存盘点的人物,并以更少的麻烦更快地完成工作。一个人需要梯子或电梯进入的高箱,可以通过无人机很容易地达到,无人机可以被编程为独立地导航空间,并且他们比执行大规模的重复任务的准确性和效率要比人类更好。
目前市场上的RFID无人机需要庞大的读卡器才能连接到无人机的本身。这意味着它们必须足够大,以支持附加硬件的尺寸和重量,使其存在坠机风险。麻省理工学院的新解决方案,名为Rfly,允许无人机阅读RFID标签,而不用捆绑巨型读卡器。相反,无人机配备了一个微小的继电器,它像Wi-Fi中继器一样。无人机接收从远程RFID读取器发送的信号,然后转发它读取附近的标签。由于继电器很小,这意味着可以使用更小巧的无人机,可以使用塑料零件,可以适应较窄的空间,不会造成人身伤害的危险。
麻省理工学院的Rfly系统本质上是对现有技术的一个聪明的补充,它不仅消除了额外的RFID读取器,而且由于它是一个更轻的解决方案,允许小型无人机与大型无人机做同样的工作。研究团队正在马萨诸塞州的零售商测试该系统。
"""
key_words = ["无人机"]
mod = FastTextRank4Sentence(use_w2v=False, use_stopword=True,max_iter=100, tol=0.0001,stop_words_file="stopwords.txt")
print("加载完成")
old_time =time.time()
print(mod.summarize(text, 5, key_words))
print(time.time() - old_time)

FastTextRank 直接调用summarize()方法即可进行测试,我这边没有采用word2vec的方式,word2vec需要自己整理语料,前期先不做。

代码中有个变量就是key_words, 输入的是关键词的集合

然后在summarize()中传入

 

FastTextRank4Sentence.py:

def summarize(self,text,n, key_words):text = text.replace('\n', '')text = text.replace('\r', '')text = util.as_text(text)#处理编码问题tokens=util.cut_sentences(text)#sentences用于记录文章最原本的句子,sents用于各种计算操作sentences, sents=util.cut_filter_words(tokens,self.__stop_words,self.__use_stopword)# 改进,如果包含关键词,加大权重weigth_sentences = []for _sentence in sentences:k = 0.5for _key_word in key_words:if _key_word in _sentence:if len(_key_word) < len(sentences):k += len(sentences) // len(key_words)else:k += 1weigth_sentences.append(k)if self.__use_w2v:sents = self.filter_dictword(sents)graph = self.create_graph_sentence(sents,self.__use_w2v)scores = util.weight_map_rank(graph,self.__max_iter,self.__tol, weigth_sentences)sent_selected = nlargest(n, zip(scores, count()))sent_index = []for i in range(n):sent_index.append(sent_selected[i][1])  # 添加入关键词在原来文章中的下标return [sentences[i] for i in sent_index], sent_index

在summarize()方法中,先统计出关键词在句子中是否出现,出现一次初始权重加一次。添加的规则就是, 当句子中出现了一个关键词,权重 +  len(sentences)÷ len(key_words), sentences 表示分好的句子的集合

看图,在weight_map_rank() 中,我们将初始化好的权重传入

 

util.py:

 

def weight_map_rank(weight_graph,max_iter,tol, weigth_sentences):'''输入相似度的图(矩阵)返回各个句子的分数:param weight_graph::return:'''# 初始分数设置为0.5#初始化每个句子的分子和老分数# scores = [0.5 for _ in range(len(weight_graph))]scores= weigth_sentencesold_scores = [0.0 for _ in range(len(weight_graph))]denominator = caculate_degree(weight_graph)# 开始迭代count=0while different(scores, old_scores,tol):for i in range(len(weight_graph)):old_scores[i] = scores[i]#计算每个句子的分数for i in range(len(weight_graph)):scores[i] = calculate_score(weight_graph,denominator, i) + scores[i]count+=1if count>max_iter:breakreturn scores

主要改变有2个地方:

第一个地方在

我们将socres 的初始化使用我们自己的权重

 

第二个地方:

 

计算scores和的时候,将初始化的权重加上

 

OK。完成

思想很简单,改动也很简单,效果有待验证,欢迎大家指正。

这篇关于优化TextRank文本摘要,自定义关键词增加句子的权重的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120198

相关文章

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O