使用分离轴定理对多边形进行碰撞检测

2024-08-30 04:44

本文主要是介绍使用分离轴定理对多边形进行碰撞检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

分离轴定理(SAT,Separating Axis Theorem)进行二维多边形碰撞检测是一种常见且有效的方法,用于二维多边形碰撞检测的基本思想是:如果两个凸多边形不相交,那么存在一条轴(线),使得这条轴上的投影会使两个多边形的投影不重叠。换句话说,如果我们找到一条轴,使得两个多边形在这条轴上的投影不重叠,那么我们可以确定两个多边形不会相交。

一、计算所有可能的分离轴

对于每个多边形,计算所有边的法向量作为可能的分离轴

对于每个边(即每条边的法向量),法向量是与边垂直的向量

// 计算一个向量的法向量
Vector2 perpendicular(const Vector2& v) {return Vector2(-v.y, v.x);
}// 计算多边形的边法向量
std::vector<Vector2> getPolygonAxes(const std::vector<Vector2>& polygon) {std::vector<Vector2> axes;size_t count = polygon.size();for (size_t i = 0; i < count; ++i) {Vector2 edge = polygon[(i + 1) % count] - polygon[i];axes.push_back(perpendicular(edge));}return axes;
}

二、将多边形投影到每个分离轴上

使用点积运算将多边形的每个顶点投影到分离轴上

计算这些投影的最小值和最大值,以确定投影区间。

// 投影一个多边形到一个轴上
std::pair<float, float> projectPolygon(const std::vector<Vector2>& polygon, const Vector2& axis) {float min = dot(polygon[0], axis);float max = min;for (const auto& vertex : polygon) {float projection = dot(vertex, axis);min = std::min(min, projection);max = std::max(max, projection);}return {min, max};
}// 检查两个多边形是否相交
bool polygonsIntersect(const std::vector<Vector2>& poly1, const std::vector<Vector2>& poly2) {std::vector<Vector2> axes = getPolygonAxes(poly1);std::vector<Vector2> axes2 = getPolygonAxes(poly2);// 将两个多边形的轴合并axes.insert(axes.end(), axes2.begin(), axes2.end());for (const auto& axis : axes) {auto proj1 = projectPolygon(poly1, axis);auto proj2 = projectPolygon(poly2, axis);if (!overlap(proj1, proj2)) {return false; // 找到一个分离轴,两个多边形不相交}}return true; // 没有找到分离轴,两个多边形相交
}

三、检查投影是否重叠 

对每条分离轴上的投影区间进行重叠检测。

如果在任何一个轴上投影区间不重叠,两个多边形就不会相交。

如果所有的轴上投影区间都重叠,那么两个多边形相交。

// 检查两个区间是否重叠
bool overlap(const std::pair<float, float>& a, const std::pair<float, float>& b) {return !(a.second < b.first || b.second < a.first);
}

四、测试源码 

#include <vector>
#include <iostream>
#include <algorithm> // For std::max and std::min// 表示二维向量
struct Vector2 {float x, y;Vector2(float x = 0, float y = 0) : x(x), y(y) {}
};// 计算两个向量的点积
float dot(const Vector2& a, const Vector2& b) {return a.x * b.x + a.y * b.y;
}// 计算两个向量的差
Vector2 operator-(const Vector2& a, const Vector2& b) {return Vector2(a.x - b.x, a.y - b.y);
}// 计算一个向量的法向量
Vector2 perpendicular(const Vector2& v) {return Vector2(-v.y, v.x);
}// 计算多边形的边法向量
std::vector<Vector2> getPolygonAxes(const std::vector<Vector2>& polygon) {std::vector<Vector2> axes;size_t count = polygon.size();for (size_t i = 0; i < count; ++i) {Vector2 edge = polygon[(i + 1) % count] - polygon[i];axes.push_back(perpendicular(edge));}return axes;
}// 投影一个多边形到一个轴上
std::pair<float, float> projectPolygon(const std::vector<Vector2>& polygon, const Vector2& axis) {float min = dot(polygon[0], axis);float max = min;for (const auto& vertex : polygon) {float projection = dot(vertex, axis);min = std::min(min, projection);max = std::max(max, projection);}return {min, max};
}// 检查两个区间是否重叠
bool overlap(const std::pair<float, float>& a, const std::pair<float, float>& b) {return !(a.second < b.first || b.second < a.first);
}// 检查两个多边形是否相交
bool polygonsIntersect(const std::vector<Vector2>& poly1, const std::vector<Vector2>& poly2) {std::vector<Vector2> axes = getPolygonAxes(poly1);std::vector<Vector2> axes2 = getPolygonAxes(poly2);// 将两个多边形的轴合并axes.insert(axes.end(), axes2.begin(), axes2.end());for (const auto& axis : axes) {auto proj1 = projectPolygon(poly1, axis);auto proj2 = projectPolygon(poly2, axis);if (!overlap(proj1, proj2)) {return false; // 找到一个分离轴,两个多边形不相交}}return true; // 没有找到分离轴,两个多边形相交
}int main() {std::vector<Vector2> poly1 = {Vector2(0, 0), Vector2(1, 0),Vector2(1, 1), Vector2(0, 1)};std::vector<Vector2> poly2 = {Vector2(0.5, 0.5), Vector2(1.5, 0.5),Vector2(1.5, 1.5), Vector2(0.5, 1.5)};if (polygonsIntersect(poly1, poly2)) {std::cout << "Polygons intersect!" << std::endl;} else {std::cout << "Polygons do not intersect." << std::endl;}return 0;
}

这篇关于使用分离轴定理对多边形进行碰撞检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119834

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用