【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程

2024-08-30 04:12

本文主要是介绍【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】自由能原理——神经科学的“能量守恒”方程

关键词提炼

#自由能原理 #KL散度 #生成模型 #识别密度 #观测数据 #神经科学

第一节:自由能原理的类比与核心概念

1.1 自由能原理的类比

自由能原理在神经科学中的应用,可以类比为一个“大脑的能量守恒”方程。就像物理学中的能量守恒定律一样,大脑在处理信息时,也遵循着一种“自由能守恒”的原则。
这个原理通过衡量大脑对外部世界的识别(识别密度)与内部模型的生成(生成模型)之间的差异,并加上观测数据的影响,来计算大脑在处理信息时的“自由能”。

在这里插入图片描述

1.2 相似公式比对

  • 能量守恒定律 Δ E = Q − W \Delta E = Q - W ΔE=QW,描述了能量在系统中的守恒关系。
  • 自由能原理 F = D K L ( q ( x ) ∥ p ( x ∣ y ) ) + log ⁡ p ( y ) F = D_{KL}(q(x) \parallel p(x \mid y)) + \log p(y) F=DKL(q(x)p(xy))+logp(y),则描述了神经科学中信息处理的“自由能守恒”。

第二节:自由能原理的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
自由能F代表大脑在处理信息时的“能量”状态。类似于物理中的自由能,是系统状态的一种度量。
KL散度衡量识别密度q(x)与生成模型p(x∣y)之间的差异。类似于距离,表示两个分布之间的差异程度。
识别密度q(x)大脑对外部世界的识别或感知。类似于我们对外部世界的“观察”或“理解”。
生成模型p(x∣y)大脑内部的模型,用于生成对外部世界的预测或解释。类似于我们对外部世界的“假设”或“模型”。
观测数据y外部世界提供给大脑的信息。类似于我们眼睛看到的、耳朵听到的等外部信息。

2.2 优势与劣势

  • 量化分析:将大脑的信息处理过程量化,使得研究更加客观和准确。
  • 模型解释:提供了大脑如何处理外部信息的一种理论框架。

2.3 与神经科学的类比

自由能原理在神经科学中扮演着“能量守恒”的角色,它揭示了大脑在处理信息时遵循的一种基本原则,就像物理学中的能量守恒定律一样。

第三节:公式探索与推演运算

3.1 自由能原理的基本形式

自由能原理的基本形式为:

F = D K L ( q ( x ) ∥ p ( x ∣ y ) ) + log ⁡ p ( y ) F = D_{KL}(q(x) \parallel p(x \mid y)) + \log p(y) F=DKL(q(x)p(xy))+logp(y)

其中,F代表自由能, D K L D_{KL} DKL是KL散度,q(x)是识别密度,p(x∣y)是生成模型,y是观测数据。

3.2 具体实例与推演

假设识别密度q(x)是一个高斯分布,生成模型p(x∣y)也是一个高斯分布,且两者具有相同的均值但不同的方差,那么KL散度就可以通过计算两个高斯分布之间的差异来得到。同时,观测数据y的对数概率 log ⁡ p ( y ) \log p(y) logp(y)可以通过观测数据的分布来计算。将这两部分相加,就可以得到自由能F的值。

第四节:相似公式比对

  • 信息增益自由能原理中的KL散度

    • 共同点:都涉及到了信息的度量。
    • 不同点:信息增益通常用于决策树等算法中,衡量特征对分类的贡献;而KL散度则用于衡量两个分布之间的差异,是自由能原理的一部分。
  • 贝叶斯公式自由能原理

    • 相似点:都涉及到了先验概率和后验概率。
    • 差异:贝叶斯公式是概率论中的基本公式,用于计算后验概率;而自由能原理则是神经科学中的一个原理,用于描述大脑的信息处理过程。

第五节:核心代码与可视化

这段代码使用Python的NumPy和Matplotlib库来计算和可视化自由能原理。通过模拟识别密度和生成模型,计算KL散度和观测数据的对数概率,从而得到自由能的值,并进行可视化展示。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# Define the recognition density q(x) and the generative model p(x|y)
def q(x):return np.exp(-(x - 0)**2 / (2 * 1**2)) / (np.sqrt(2 * np.pi) * 1)def p(x, y):return np.exp(-(x - y)**2 / (2 * 0.5**2)) / (np.sqrt(2 * np.pi) * 0.5)# Define the KL divergence
def KL_divergence(q_dist, p_dist):return np.sum(q_dist * np.log(q_dist / p_dist))# Define the log probability of the observation data
def log_probability(y):return -np.log(np.sqrt(2 * np.pi)) - 0.5 * y**2# Calculate the free energy
def free_energy(y):x_values = np.linspace(-5, 5, 1000)q_dist = q(x_values)p_dist = p(x_values, y)kl_div = KL_divergence(q_dist, p_dist)log_prob = log_probability(y)return kl_div + log_prob# Visualize the free energy for different observation data
y_values = np.linspace(-3, 3, 10)
free_energies = [free_energy(y) for y in y_values]sns.set_theme(style="whitegrid")
plt.plot(y_values, free_energies, label='Free Energy F(y)')
plt.xlabel('Observation Data y')
plt.ylabel('Free Energy F')
plt.title('Free Energy for Different Observation Data')
plt.legend()
plt.show()# Printing more detailed output information
print("Free energy plot has been generated and displayed. \nThe plot illustrates the free energy F(y) for different values of observation data y, \ncalculated using the Free Energy Principle.")

这段代码首先定义了识别密度q(x)和生成模型p(x∣y),然后计算了KL散度和观测数据的对数概率,最后得到了自由能的值,并进行了可视化展示。通过可视化,我们可以直观地看到自由能随观测数据y的变化情况。

代码输出内容
在这里插入图片描述

这篇关于【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119764

相关文章

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

Spring框架中@Lazy延迟加载原理和使用详解

《Spring框架中@Lazy延迟加载原理和使用详解》:本文主要介绍Spring框架中@Lazy延迟加载原理和使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、@Lazy延迟加载原理1.延迟加载原理1.1 @Lazy三种配置方法1.2 @Component

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re