【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程

2024-08-30 04:12

本文主要是介绍【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】自由能原理——神经科学的“能量守恒”方程

关键词提炼

#自由能原理 #KL散度 #生成模型 #识别密度 #观测数据 #神经科学

第一节:自由能原理的类比与核心概念

1.1 自由能原理的类比

自由能原理在神经科学中的应用,可以类比为一个“大脑的能量守恒”方程。就像物理学中的能量守恒定律一样,大脑在处理信息时,也遵循着一种“自由能守恒”的原则。
这个原理通过衡量大脑对外部世界的识别(识别密度)与内部模型的生成(生成模型)之间的差异,并加上观测数据的影响,来计算大脑在处理信息时的“自由能”。

在这里插入图片描述

1.2 相似公式比对

  • 能量守恒定律 Δ E = Q − W \Delta E = Q - W ΔE=QW,描述了能量在系统中的守恒关系。
  • 自由能原理 F = D K L ( q ( x ) ∥ p ( x ∣ y ) ) + log ⁡ p ( y ) F = D_{KL}(q(x) \parallel p(x \mid y)) + \log p(y) F=DKL(q(x)p(xy))+logp(y),则描述了神经科学中信息处理的“自由能守恒”。

第二节:自由能原理的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
自由能F代表大脑在处理信息时的“能量”状态。类似于物理中的自由能,是系统状态的一种度量。
KL散度衡量识别密度q(x)与生成模型p(x∣y)之间的差异。类似于距离,表示两个分布之间的差异程度。
识别密度q(x)大脑对外部世界的识别或感知。类似于我们对外部世界的“观察”或“理解”。
生成模型p(x∣y)大脑内部的模型,用于生成对外部世界的预测或解释。类似于我们对外部世界的“假设”或“模型”。
观测数据y外部世界提供给大脑的信息。类似于我们眼睛看到的、耳朵听到的等外部信息。

2.2 优势与劣势

  • 量化分析:将大脑的信息处理过程量化,使得研究更加客观和准确。
  • 模型解释:提供了大脑如何处理外部信息的一种理论框架。

2.3 与神经科学的类比

自由能原理在神经科学中扮演着“能量守恒”的角色,它揭示了大脑在处理信息时遵循的一种基本原则,就像物理学中的能量守恒定律一样。

第三节:公式探索与推演运算

3.1 自由能原理的基本形式

自由能原理的基本形式为:

F = D K L ( q ( x ) ∥ p ( x ∣ y ) ) + log ⁡ p ( y ) F = D_{KL}(q(x) \parallel p(x \mid y)) + \log p(y) F=DKL(q(x)p(xy))+logp(y)

其中,F代表自由能, D K L D_{KL} DKL是KL散度,q(x)是识别密度,p(x∣y)是生成模型,y是观测数据。

3.2 具体实例与推演

假设识别密度q(x)是一个高斯分布,生成模型p(x∣y)也是一个高斯分布,且两者具有相同的均值但不同的方差,那么KL散度就可以通过计算两个高斯分布之间的差异来得到。同时,观测数据y的对数概率 log ⁡ p ( y ) \log p(y) logp(y)可以通过观测数据的分布来计算。将这两部分相加,就可以得到自由能F的值。

第四节:相似公式比对

  • 信息增益自由能原理中的KL散度

    • 共同点:都涉及到了信息的度量。
    • 不同点:信息增益通常用于决策树等算法中,衡量特征对分类的贡献;而KL散度则用于衡量两个分布之间的差异,是自由能原理的一部分。
  • 贝叶斯公式自由能原理

    • 相似点:都涉及到了先验概率和后验概率。
    • 差异:贝叶斯公式是概率论中的基本公式,用于计算后验概率;而自由能原理则是神经科学中的一个原理,用于描述大脑的信息处理过程。

第五节:核心代码与可视化

这段代码使用Python的NumPy和Matplotlib库来计算和可视化自由能原理。通过模拟识别密度和生成模型,计算KL散度和观测数据的对数概率,从而得到自由能的值,并进行可视化展示。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# Define the recognition density q(x) and the generative model p(x|y)
def q(x):return np.exp(-(x - 0)**2 / (2 * 1**2)) / (np.sqrt(2 * np.pi) * 1)def p(x, y):return np.exp(-(x - y)**2 / (2 * 0.5**2)) / (np.sqrt(2 * np.pi) * 0.5)# Define the KL divergence
def KL_divergence(q_dist, p_dist):return np.sum(q_dist * np.log(q_dist / p_dist))# Define the log probability of the observation data
def log_probability(y):return -np.log(np.sqrt(2 * np.pi)) - 0.5 * y**2# Calculate the free energy
def free_energy(y):x_values = np.linspace(-5, 5, 1000)q_dist = q(x_values)p_dist = p(x_values, y)kl_div = KL_divergence(q_dist, p_dist)log_prob = log_probability(y)return kl_div + log_prob# Visualize the free energy for different observation data
y_values = np.linspace(-3, 3, 10)
free_energies = [free_energy(y) for y in y_values]sns.set_theme(style="whitegrid")
plt.plot(y_values, free_energies, label='Free Energy F(y)')
plt.xlabel('Observation Data y')
plt.ylabel('Free Energy F')
plt.title('Free Energy for Different Observation Data')
plt.legend()
plt.show()# Printing more detailed output information
print("Free energy plot has been generated and displayed. \nThe plot illustrates the free energy F(y) for different values of observation data y, \ncalculated using the Free Energy Principle.")

这段代码首先定义了识别密度q(x)和生成模型p(x∣y),然后计算了KL散度和观测数据的对数概率,最后得到了自由能的值,并进行了可视化展示。通过可视化,我们可以直观地看到自由能随观测数据y的变化情况。

代码输出内容
在这里插入图片描述

这篇关于【自由能系列(初级)】自由能原理——神经科学的“能量守恒”方程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119764

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、