Priority_Queue 的使用和模拟

2024-08-30 02:44
文章标签 使用 模拟 queue priority

本文主要是介绍Priority_Queue 的使用和模拟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录
一·基本的介绍

优先队列是一种容器适配器;他的第一个元素总是他包含所有元素里面最大的一个

他的底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。
这个底层容器应该可以通过随机访问迭 代器,并支持以下操作:
empty():检测容器是否为空
size():返回容器中有效元素个数
front():返回容器中第一个元素的引用
push_back():在容器尾部插入元素
pop_back():删除容器尾部元素

优先队列里面的“优先”指的是:进行容器遍历访问 的时候优先访问顶部的元素

二. 常用接口的介绍 
1.构造函数

2. void push(const T&val ) 

3. void pop()

 4. const T& top( )

 

 接口的简单使用:

 通过对成员接口的了解,我们可以推测优先队列的底层结构可能是一个

三· 模拟实现
1.仿函数

第一个参数用到的就是仿函数。

仿函数是对 opertaor() 的一个重载

2.仿函数使用
2.1  指定进行降序的输出
2.2 指定进行升序的输出 

2.3 仿函数的调用 

分析:

Less <Date> l2,编译器进行实例化的时候,模板参数T 实例化为 Date 类型,从而生成一份

bool operator() (Date left,Date right)的函数,只不过使用模板,咱们程序员省了此步骤。 

3.priority_queue 类的模拟

一般默认Container 的类型是  vector<T>

为什么默认使用 vector 作为优先队列的底层容器?而不用list这个容器

1) 优先队列支持快速的访问此队列里面的最大或者最小元素;因此底层通常借助堆这一结构实

现,堆是一个特殊的完全二叉树

2)vector 提供了动态大小数组的功能,内部是一段连续的内存,因此在访问元素的时候,大大提

高了效率

3)list 相比较vector 而言,内存是不连续的,在进行元素访问的时候,需要对指针进行一系列操

作,因此效率不如vector

4 push() 模拟

因为需要随时保证访问的第一个元素是最大的或是最小的,这里需模拟建大堆和建小堆的一系列操

有关对堆进行上调和下调的相关细节的实现,可以康康下面博客

 建堆的相关调整

4.1 上调算法
  void adjust_up(int child) //从孩子节点开始{Compare com;int parent = (child - 1 ) / 2;//默认根节点下标从0开始while (child > 0){if (_c[parent] < _c[child]) //对象直接比较//if(com(_c[parent] , _c[child]))  // _com(_c[parent] , _c[child] 相当于回调仿函数模板,可以把_com 想象成函数指针,仿函数模板:替代函数指针{std::swap(_c[parent], _c[child]);child = parent;parent = (child - 1) / 2;}elsebreak;}}
4.2 push ()实现
  void push(const T& x){_c.push_back(x);// 上调:建大堆adjust_up(_c.size()-1);//需要把插入当前数据所在的位置传过去}
5.pop()模拟
5.1 下调算法
        void adjust_down(int parent) //向下调整从父节点开始{Compare com;int child = 2 * parent + 1;while ((size_t)child < (_c.size() )){if ((size_t)child + 1 < (_c.size() ) && _c[child + 1] > _c[child]) // _c[child + 1] > _c[child] 这里直接就是对象的大小比较,可以使用仿函数进行大小比较child++;//更新为最大的孩子节点//if (_c[child] > _c[parent] )if (com( _c[parent], _c[child]) ) //使用仿函数模板{std::swap(_c[child], _c[parent]);parent = child;child = 2 * parent + 1;}elsebreak;}}
5.2 pop()实现
        void pop() {//堆的删除:堆顶与堆尾交换在进行大堆的调整std::swap(_c[0], _c[_c.size() - 1]);_c.pop_back();adjust_down(0);}
6. top()模拟
        T& top(){return _c[0];}
7.size()

8. empty()

9. 完整代码实现 
#pragma once
#include<vector>
namespace y
{//仿函数模板//就是对 () 进行重载template<class T, class Container = vector<T>,class Compare = Less<T>>  //注意:Compare 只是一个模板类型,实例化的时候,会变成指定类型class priority_queue{public:priority_queue(){}template <class InputIterator>priority_queue(InputIterator first, InputIterator last):_c(first,last){//建议使用下调时间复杂度 O(N)//必须是有序,所有一开始传i = (_c.size() - 1 -1)/2 对应最后一个父节点for (int i = (_c.size() - 1 -1)/2; i >= 0; --i){adjust_down(i);}}bool empty() const{return _c.empty();}size_t size() const{return _c.size();}void adjust_down(int parent) //向下调整从父节点开始{Compare com;int child = 2 * parent + 1;while ((size_t)child < (_c.size() )){if ((size_t)child + 1 < (_c.size() ) //&& _c[child + 1] > _c[child]) // _c[child + 1] > _c[child] 这里直接就是对象的大小比较,可以使用仿函数进行大小比较&& com(_c[child], _c[child+1]))// 建大堆child++;//更新为最大的孩子节点//if (_c[child] > _c[parent] )if (com( _c[parent], _c[child]) ) //使用仿函数模板{std::swap(_c[child], _c[parent]);parent = child;child = 2 * parent + 1;}elsebreak;}}void adjust_up(int child) //从孩子节点开始{Compare com;int parent = (child - 1 ) / 2;//默认根节点下标从0开始while (child > 0){//if (_c[parent] < _c[child]) //对象直接比较if(com(_c[parent] , _c[child]))  // _com(_c[parent] , _c[child] 相当于回调仿函数模板,可以把_com 想象成函数指针,仿函数模板:替代函数指针{std::swap(_c[parent], _c[child]);child = parent;parent = (child - 1) / 2;}elsebreak;}}void pop() {//堆的删除:堆顶与堆尾交换在进行大堆的调整std::swap(_c[0], _c[_c.size() - 1]);_c.pop_back();adjust_down(0);}void push(const T& x){_c.push_back(x);// 上调:建大堆adjust_up(_c.size()-1);//需要把插入当前数据所在的位置传过去}T& top(){return _c[0];}private:Container _c;//表示底层的容器//Compare _com;//类似于函数指针};
}

这篇关于Priority_Queue 的使用和模拟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119577

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他