LBP 和深度学习,人脸识别

2024-08-30 02:08
文章标签 学习 深度 人脸识别 lbp

本文主要是介绍LBP 和深度学习,人脸识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近读了一篇关于LBP和DBN的文章,感觉思路挺好的,如有不当之处望指正!!!!!

这是一篇在非限制条件下,基于深度学习的人脸识别算法。,将LBP纹理特征作为深度网络的输入,通过逐层贪婪训练网络,获得良好的网络参数,并用训练好的网络对测试样本进行预测。

文章通过LBP提取非限制条件下人脸图像的纹理特征并利用DBN进一步自动学习更抽象、更有效的人脸特征,并在DBN顶层自动进行人脸分类。LBP所提取的人脸图像的局部纹理特征对光照和微小平移具有较强的顽健性,将其作为DBN输入特征更有助于网络对图像特征分布的理解,进一步减少网络学习到不利的特征描述;同时,通过DBN对输入数据进行深度学习和自动特征提取,并在网络最顶层实现特征识别,有效避免了过多主动因素的干预。

文章Idea:

提出LBP和DBN相结合的非限制条件下人脸识别,征。将LBP与DBN相结合,克服了DBN不能学习到人脸图像局部结构特征的缺点,使得DBN学习到的抽象特征受光照、微小平移等的影响较小。

文章算法:

DBN训练步骤:

1)对第一层RBM,以LBP纹理特征为输入,对RBM进行无监督训练,获得该层最优的参数;

2)高层RBM以低一层RBM输出数据为输入,对RBM进行无监督,获得RBM网络最优的参数值;

3)最后利用全局训练的方法对训练好的各层参数微调,使得DBN收敛到全局最优。该训练方法绕过了全局训练的复杂性,通过快速散度(CD,contrastive diber.gence)¨/J训练RBM获得DBN各层的最优参数,降低了学习目标过拟合的风险,使得网络具有更好的数据预测能力。

算法步骤

1)用双线性内插法将测试样本和训练样本降维至32×32,并进行直方图均衡化等归一化预处理。
2)对训练样本和测试样本进行分块并提取每个子块的LBP纹理特征,将每个子块的特征连接起来形成样本的LBP纹理特征。本文LBP纹理特征提取时样本分块为4×5,半径尺为1,像素数P为8。此时所提取的LBP纹理特征和像素级特征维数相当。
3)将训练样本的LBP纹理特征作为DBN可视层输入,对深度网络进行逐层训练,以获取最优网络参数。文中DBN层数选为2层:第1层学习率为0.002,迭代次数为40;第2层为0.003,迭代次数为40。
4)当深度网络训练完后,将测试样本的LBP纹理特征作为DBN可视层输入,利用优化后的网络由下向上多层次地学习和提取测试样本的抽象特征,在网络最顶层进行SoftMax回归分类,获得测试样本的类标值,并计算正确识别率。

实验结果:


结果表示随着隐藏单元数的增加,深度网络能够更好地表达人脸图像特征,但是网络的训练时间和分类时间也随之增加,计算量逐渐增大,因而对硬件要求也随之提高。


。当训练样本数增加时,提取类别特征较为丰富,算法识别率剧增高

总之,。本文算法在受姿态、光照、表情、遮挡等综合因素影响的非限制条件下具有较好的识别效果,同时在受多种因素影响的Yale库和光照因素影响的Yale—B库上取得较高的识别率。

这篇关于LBP 和深度学习,人脸识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1119495

相关文章

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、