LlamaIndex 实现 Agent

2024-08-29 20:44
文章标签 实现 agent llamaindex

本文主要是介绍LlamaIndex 实现 Agent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RAG 是在数据层面为大模型提供更多、更新的外部知识,而 Agent (智能体),为大模型扩展了推理业务的能力。数据是静态的,数据周期可能是天、小时甚至到秒,通过 RAG 实现时,需要调用对应系统的 API 去实时获取相关数据并组合发给 LLM,如果是一系列动作完成一个需求,前一个动作的输出是下一个动作的输入,使用 RAG 处理就相当复杂,也没有利用到大模型强大的推理能力。

Agent 的推出很好的解决了模型调用工具能力(Function Call),工具能力最早始于 ChatGPT,例如,我们想了解当前北京的气温,需要实时数据,有了工具能力就可以调用 API 获取是实时数据。本文将介绍如果通过 LlamaIndex 实现 Agent。

ReActAgent

LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool,

from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool

ReActAgent 是什么?

ReActAgent 通过结合推理(Reasoning)和行动(Acting)来创建动态的 LLM Agent 的框架。该方法允许 LLM 模型通过在复杂环境中交替进行推理步骤和行动步骤来更有效地执行任务。ReActAgent 将推理和动作形成了闭环,Agent 可以自己完成给定的任务。

一个典型的 ReActAgent 遵循以下循环:

  1. 初始推理:代理首先进行推理步骤,以理解任务、收集相关信息并决定下一步行为。
  2. 行动:代理基于其推理采取行动——例如查询API、检索数据或执行命令。
  3. 观察:代理观察行动的结果并收集任何新的信息。
  4. 优化推理:利用新信息,代理再次进行推理,更新其理解、计划或假设。
  5. 重复:代理重复该循环,在推理和行动之间交替,直到达到满意的结论或完成任务。

在这里插入图片描述

本地模型实现 Agent

实现最简单的代码,通过外部工具做算术题,只是一个简单的例子,这个不用 Agent,大模型也可以回答。

from llm import get_local_ollama
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionToolllm = get_local_ollama()def multiply(a: float, b: float) -> float:"""Multiply two numbers and returns the product"""return a * bmultiply_tool = FunctionTool.from_defaults(fn=multiply)def add(a: float, b: float) -> float:"""Add two numbers and returns the sum"""return a + badd_tool = FunctionTool.from_defaults(fn=add)agent = ReActAgent.from_tools([multiply_tool, add_tool], llm=llm, verbose=True)response = agent.chat("What is 20+(2*4)?")

在这里插入图片描述
当我们问大模型一个天气的问题,当没有工具时,大模型这么回答,作为大语言模型,他不知道天气情况并给出去哪里可以查到天气情况。
在这里插入图片描述
现在为我们的 Agent 添加一个查询天气的方法,返回假数据做测试

def get_weather(city: str) -> int:"""Gets the weather temperature of a specified city.Args:city (str): The name or abbreviation of the city.Returns:int: The temperature of the city. Returns 20 for 'NY' (New York),30 for 'BJ' (Beijing), and -1 for unknown cities."""# Convert the input city to uppercase to handle case-insensitive comparisonscity = city.upper()# Check if the city is New York ('NY')if city == "NY":return 20  # Return 20°C for New York# Check if the city is Beijing ('BJ')elif city == "BJ":return 30  # Return 30°C for Beijing# If the city is neither 'NY' nor 'BJ', return -1 to indicate unknown cityelse:return -1weather_tool = FunctionTool.from_defaults(fn=get_weather)agent = ReActAgent.from_tools([multiply_tool, add_tool, weather_tool], llm=llm, verbose=True)response = agent.chat("纽约天气怎么样?")

可以看到模型的推理能力很强,将纽约转成了 NY。
在这里插入图片描述
可以在 arize_phoenix 中看到 agent 的具体提示词,工具被装换成了提示词。
在这里插入图片描述

总结

ReActAgent 使得业务自动向代码转换成为可能,只要有 API 模型就可以调用,很多业务场景都适用,LlamaIndex 提供了一些开源的工具实现,可以到官网查看。

虽然 Agent 可以实现业务功能, 但是一个 Agent 不能完成所有的功能,这也符合软件解耦的设计原则,不同的 Agent 可以完成不同的任务,各司其职,Agent 之间可以进行交互、通信,类似于微服务。后续的文章中,我们将继续介绍 Agent 的高级实现方式。

这篇关于LlamaIndex 实现 Agent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118850

相关文章

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用