图像字幕Image Captioning——使用语法和语义正确的语言描述图像

本文主要是介绍图像字幕Image Captioning——使用语法和语义正确的语言描述图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是图像字幕

        Image Captioning(图像字幕生成) 是计算机视觉和自然语言处理(NLP)领域的一个交叉研究任务,其目标是自动生成能够描述给定图像内容的自然语言句子。这项任务要求系统不仅要理解图像中的视觉内容,还要能够将这些视觉信息转化为具有连贯性和语义丰富的文本描述。

        图像字幕任务的3个关键因素:图像中的显著对象;对象之间的相互作用;用自然语言来表达它们。因此,在处理图像字幕任务中,一个好的方法要尽可能涵盖上述3个因素。

        下图是更具体的展示:

2. 图像字幕的工作流程

        通常,图像字幕生成涉及以下几个关键步骤:

  • 图像特征提取:首先使用卷积神经网络(CNN)或其他深度学习模型从图像中提取视觉特征。这些特征通常是在一个较高的抽象层次上,能够捕捉图像的内容和细节。
  • 特征编码:将提取的图像特征编码为一种能够被语言模型理解的格式。通常,这一步包括将高维的图像特征向量转化为语言模型的输入。
  • 序列生成:使用循环神经网络(RNN)、长短期记忆网络(LSTM)、或转换器(Transformer)等语言模型,根据编码的图像特征生成描述性文本序列。
  • 文本解码:将生成的序列转换为自然语言句子。

        Image Captioning是将图片转换为文字,是多模态任务,属于CV和NLP的交叉领域,因此其编码器部分通常使用CV中的结构,而解码器部分使用NLP中的结构。 

3. 常用方法-Encoder-Decoder 方法

        这是最常见的图像字幕生成框架,其中编码器(通常是 CNN)负责提取图像特征,解码器(通常是 RNN 或 LSTM)生成描述性文本。编码器和解码器之间可能会使用注意力机制,以帮助模型关注图像中最相关的部分。

3.1. 编码器

        主要有五类:

  •  1)Global CNN Features:使用CNN提取全局特征
  •  2)Attention Over Grid of CNN Features:使用CNN获取分块图像特征,这些分块特征作为语言解码器部分的输入;
  •  3)Attention Over Visual Regions:使用检测器提取图像中不同对象特征,这些对象特征作为语言解码器部分的输入;
  •  4)Graph-based Encoding:相比于方法3)加上了单独的对象间关系处理部分,使用Graph
  •  5)Self-Attention Encoding:相比于方法3),都加上了单独的对象间关系处理部分,使用自注意力机制。

        结合上文提到的图像字幕任务3个关键因素,方法4)和5)在模型设计上更有效,5)相比于4)在当下(2024-1)更主流,其中基于CLIP(2021)图像编码器的方法最具有潜力。

      

3.2. 解码器

        语言部分和视觉部分一样,都有着比较清晰的路线,从早期的RNN、LSTM到现在主流的Transformer(2017)、BERT(2018)。

4. 常用数据集

MSCOCO(Microsoft Common Objects in Context):这是最广泛使用的图像字幕生成数据集之一,包含超过 12 万张图像,每张图像有 5 条不同的描述。这些描述由人类标注,覆盖了广泛的场景和物体。

Flickr8k 和 Flickr30k:这两个数据集分别包含 8000 和 30000 张图像,每张图像也都有多个自然语言描述。它们广泛用于基准测试和模型评估。

Visual Genome:这是一个更大规模的数据集,包含丰富的物体、属性和关系标注,适合进行更复杂的图像理解和字幕生成任务。

这篇关于图像字幕Image Captioning——使用语法和语义正确的语言描述图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118315

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用