【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder

本文主要是介绍【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. fuser模块
  • 2. decoder模块
    • 2.1 backbone模块
    • 2.2 neck模块


BEVFusion相关的其他文章链接:

  1. 【论文阅读】ICRA 2023|BEVFusion:Multi-Task Multi-Sensor Fusion with Unified Bird‘s-Eye View Representation
  2. MIT-BEVFusion训练环境安装以及问题解决记录
  3. 【MIT-BEVFusion代码解读】第一篇:整体结构与config参数说明
  4. 【MIT-BEVFusion代码解读】第二篇:LiDAR的encoder部分
  5. 【MIT-BEVFusion代码解读】第三篇:camera的encoder部分
  6. 【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder

1. fuser模块

fuser模块的作用是将LiDARcamera得到的BEV特征进行融合,这里使用的ConvFuser方法将两个BEV特征融合。

x = self.fuser(features)

LiDAR=>[4, 256, 180, 180]camera => [4, 80, 180, 180]进行concat得到 => [4, 336, 180, 180],然后再卷积得到 =>[4, 256, 180, 180],具体代码如下。

class ConvFuser(nn.Sequential):def __init__(self, in_channels: int, out_channels: int) -> None:self.in_channels = in_channels # [80, 256]self.out_channels = out_channels # 256super().__init__(nn.Conv2d(sum(in_channels), out_channels, 3, padding=1, bias=False),nn.BatchNorm2d(out_channels),nn.ReLU(True),)def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:# 先进行concat,然后调用父类的卷积模块return super().forward(torch.cat(inputs, dim=1))

融合的结构如下所示:

ConvFuser((0): Conv2d(336, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)
)

2. decoder模块

decoder部分由两部分组成,分别是backboneneck,其中backbone使用的是SECONDneck部分使用的是SECONDFPN
在这里插入图片描述

2.1 backbone模块

backbone使用的SECOND,和默认的layer_nums=[3, 5, 5]结构不一样,BEVFusion中使用的layer_nums=[5, 5]。所以backbone只有两个分支,都是5个卷积模块组成。

        outs = []for i in range(len(self.blocks)):x = self.blocks[i](x)outs.append(x)return tuple(outs)
  • 分支一:

第一个分支的输入是fuser的输出,它的大小为[4, 256, 180, 180],首先经过第一个Con2d将通道降至128,后面再接5个相同的Con2d提取特征,得到outs[0]的大小为[4, 128, 180, 180]

Sequential((0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(4): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(5): ReLU(inplace=True)(6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(7): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(8): ReLU(inplace=True)(9): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(10): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(11): ReLU(inplace=True)(12): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(13): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(14): ReLU(inplace=True)(15): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(16): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(17): ReLU(inplace=True)
)
  • 分支二:

第二个分支的输入是out[0],这个分支首先经过第一个Conv2d,将通道数128上至256,并且将feature map的长和宽都减半至90,然后在经过5个相同的Conv2d提取特征,最后得到特征outs[1]的大小为[4, 256, 90, 90]

Sequential((0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(4): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(5): ReLU(inplace=True)(6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(7): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(8): ReLU(inplace=True)(9): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(10): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(13): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(14): ReLU(inplace=True)(15): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(16): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(17): ReLU(inplace=True)
)

2.2 neck模块

neck的作用是将backbone得到的feature map调整至指定大小[4, 256, 180, 180]

由于backbone得到了两个大小不同的feature map,分别为[4, 128, 180, 180][4, 256, 90, 90],第一个特征使用卷积降低通道数即可,第二个则需要反卷积来提升feature map的大小,实际上源代码也是这么做的。最后将得到两个分支的特征进行concat即可。

        assert len(x) == len(self.in_channels)# self.deblocks一共有两个,一个是卷积,一个是反卷积ups = [deblock(x[i]) for i, deblock in enumerate(self.deblocks)]# concat两个分支featureif len(ups) > 1:out = torch.cat(ups, dim=1)else:out = ups[0]return [out]

self.deblocks中第一个元素的卷积结构如下:

Sequential((0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)
)

self.deblocks中第二个元素的反卷积结构如下:

Sequential((0): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2), bias=False)(1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)(2): ReLU(inplace=True)
)

将两个分支concat得到的feature map大小为:[4, 512, 180, 180]

这篇关于【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118244

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

IIS 7.0 及更高版本中的 FTP 状态代码

《IIS7.0及更高版本中的FTP状态代码》本文介绍IIS7.0中的FTP状态代码,方便大家在使用iis中发现ftp的问题... 简介尝试使用 FTP 访问运行 Internet Information Services (IIS) 7.0 或更高版本的服务器上的内容时,IIS 将返回指示响应状态的数字代