【Flink】双流处理:实时对账实现

2024-08-29 10:32

本文主要是介绍【Flink】双流处理:实时对账实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink双流处理:实时对账实现

  • 一、基础概念
  • 二、双流处理的方法
    • Connect
    • Union
    • Join
  • 三、实战:实时对账实现
    • 需求描述
    • 需求分析
    • 代码实现
  • 相关阅读

更多内容详见:https://github.com/pierre94/flink-notes

一、基础概念

主要是两种处理模式:

  • Connect/Join
  • Union

二、双流处理的方法

Connect

DataStream,DataStream → ConnectedStreams

连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。

Connect后使用CoProcessFunction、CoMap、CoFlatMap、KeyedCoProcessFunction等API 对两个流分别处理。如CoMap:

val warning = high.map( sensorData => (sensorData.id, sensorData.temperature) )
val connected = warning.connect(low)val coMap = connected.map(
warningData => (warningData._1, warningData._2, "warning"),
lowData => (lowData.id, "healthy")
)

(ConnectedStreams → DataStream 功能与 map 一样,对 ConnectedStreams 中的每一个流分别进行 map 和 flatMap 处理。)

疑问,既然两个流内部独立,那Connect 后有什么意义呢?

Connect后的两条流可以共享状态,在对账等场景具有重大意义!

Union


DataStream → DataStream:对两个或者两个以上的 DataStream 进行 union 操作,产生一个包含所有 DataStream 元素的新 DataStream。

val unionStream: DataStream[StartUpLog] = appStoreStream.union(otherStream) unionStream.print("union:::")

注意:Union 可以操作多个流,而Connect只能对两个流操作

Join

Join是基于Connect更高层的一个实现,结合Window实现。

相关知识点比较多,详细文档见: https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/stream/operators/joining.html

三、实战:实时对账实现

需求描述

有两个时间Event1、Event2,第一个字段是时间id,第二个字段是时间戳,需要对两者进行实时对账。当其中一个事件缺失、延迟时要告警出来。

需求分析

类似之前的订单超时告警需求。之前数据源是一个流,我们在function里面进行一些改写。这里我们分别使用Event1和Event2两个流进行Connect处理。

// 事件1
case class Event1(id: Long, eventTime: Long)
// 事件2
case class Event2(id: Long, eventTime: Long)
// 输出结果
case class Result(id: Long, warnings: String)

代码实现

scala实现

涉及知识点:

  • 双流Connect
  • 使用OutputTag侧输出
  • KeyedCoProcessFunction(processElement1、processElement2)使用
  • ValueState使用
  • 定时器onTimer使用

启动两个TCP服务:

nc -lh 9999
nc -lk 9998

注意:nc启动的是服务端、flink启动的是客户端

import java.text.SimpleDateFormatimport org.apache.flink.api.common.state.{ValueState, ValueStateDescriptor}
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction
import org.apache.flink.streaming.api.scala.{StreamExecutionEnvironment, _}
import org.apache.flink.util.Collectorobject CoTest {val simpleDateFormat = new SimpleDateFormat("dd/MM/yyyy:HH:mm:ss")val txErrorOutputTag = new OutputTag[Result]("txErrorOutputTag")def main(args: Array[String]): Unit = {val env = StreamExecutionEnvironment.getExecutionEnvironmentenv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)env.setParallelism(1)val event1Stream = env.socketTextStream("127.0.0.1", 9999).map(data => {val dataArray = data.split(",")Event1(dataArray(0).trim.toLong, simpleDateFormat.parse(dataArray(1).trim).getTime)}).assignAscendingTimestamps(_.eventTime * 1000L).keyBy(_.id)val event2Stream = env.socketTextStream("127.0.0.1", 9998).map(data => {val dataArray = data.split(",")Event2(dataArray(0).trim.toLong, simpleDateFormat.parse(dataArray(1).trim).getTime)}).assignAscendingTimestamps(_.eventTime * 1000L).keyBy(_.id)val coStream = event1Stream.connect(event2Stream).process(new CoTestProcess())//    union 必须是同一条类型的流//    val unionStream = event1Stream.union(event2Stream)//    unionStream.print()coStream.print("ok")coStream.getSideOutput(txErrorOutputTag).print("txError")env.execute("union test")}//共享状态class CoTestProcess() extends KeyedCoProcessFunction[Long,Event1, Event2, Result] {lazy val event1State: ValueState[Boolean]= getRuntimeContext.getState(new ValueStateDescriptor[Boolean]("event1-state", classOf[Boolean]))lazy val event2State: ValueState[Boolean]= getRuntimeContext.getState(new ValueStateDescriptor[Boolean]("event2-state", classOf[Boolean]))override def processElement1(value: Event1, ctx: KeyedCoProcessFunction[Long, Event1, Event2, Result]#Context, out: Collector[Result]): Unit = {if (event2State.value()) {event2State.clear()out.collect(Result(value.id, "ok"))} else {event1State.update(true)//等待一分钟ctx.timerService().registerEventTimeTimer(value.eventTime + 1000L * 60)}}override def processElement2(value: Event2, ctx: KeyedCoProcessFunction[Long, Event1, Event2, Result]#Context, out: Collector[Result]): Unit = {if (event1State.value()) {event1State.clear()out.collect(Result(value.id, "ok"))} else {event2State.update(true)ctx.timerService().registerEventTimeTimer(value.eventTime + 1000L * 60)}}override def onTimer(timestamp: Long, ctx: KeyedCoProcessFunction[Long, Event1, Event2, Result]#OnTimerContext, out: Collector[Result]): Unit = {if(event1State.value()){ctx.output(txErrorOutputTag,Result(ctx.getCurrentKey,s"no event2,timestamp:$timestamp"))event1State.clear()}else if(event2State.value()){ctx.output(txErrorOutputTag,Result(ctx.getCurrentKey,s"no event1,timestamp:$timestamp"))event2State.clear()}}}}

相关阅读

《Flink状态编程: 订单超时告警》:
https://blog.csdn.net/u013128262/article/details/104648592

《github:Flink学习笔记》:
https://github.com/pierre94/flink-notes


原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

https://cloud.tencent.com/developer/article/1596145

这篇关于【Flink】双流处理:实时对账实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117607

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll