数学基础 -- 微积分之三角函数幂的积分

2024-08-29 09:36

本文主要是介绍数学基础 -- 微积分之三角函数幂的积分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三角函数幂的积分处理

1. 积分形式

1.1 ∫ sin ⁡ m ( x ) cos ⁡ n ( x ) d x \int \sin^m(x) \cos^n(x) \, dx sinm(x)cosn(x)dx

1.1.1 当 n n n 为奇数时
  1. 分离奇数次幂

    如果 cos ⁡ n ( x ) \cos^n(x) cosn(x) 是奇数次幂,可以将其分解为 cos ⁡ n − 1 ( x ) ⋅ cos ⁡ ( x ) \cos^{n-1}(x) \cdot \cos(x) cosn1(x)cos(x)
    ∫ sin ⁡ m ( x ) cos ⁡ n ( x ) d x = ∫ sin ⁡ m ( x ) ⋅ cos ⁡ n − 1 ( x ) ⋅ cos ⁡ ( x ) d x \int \sin^m(x) \cos^n(x) \, dx = \int \sin^m(x) \cdot \cos^{n-1}(x) \cdot \cos(x) \, dx sinm(x)cosn(x)dx=sinm(x)cosn1(x)cos(x)dx

  2. 代换法

    • 代换 cos ⁡ ( x ) = u \cos(x) = u cos(x)=u

      u = cos ⁡ ( x ) u = \cos(x) u=cos(x),则 − sin ⁡ ( x ) d x = d u -\sin(x) \, dx = du sin(x)dx=du sin ⁡ ( x ) d x = − d u \sin(x) \, dx = -du sin(x)dx=du
      ∫ sin ⁡ m ( x ) cos ⁡ n ( x ) d x = − ∫ sin ⁡ m ( x ) ⋅ u n − 1 d u \int \sin^m(x) \cos^n(x) \, dx = -\int \sin^m(x) \cdot u^{n-1} \, du sinm(x)cosn(x)dx=sinm(x)un1du

      使用 sin ⁡ 2 ( x ) = 1 − cos ⁡ 2 ( x ) \sin^2(x) = 1 - \cos^2(x) sin2(x)=1cos2(x),即 sin ⁡ 2 ( x ) = 1 − u 2 \sin^2(x) = 1 - u^2 sin2(x)=1u2,所以:
      sin ⁡ m ( x ) = ( 1 − u 2 ) m / 2 \sin^m(x) = (1 - u^2)^{m/2} sinm(x)=(1u2)m/2

      代入得到:
      ∫ sin ⁡ m ( x ) cos ⁡ n ( x ) d x = − ∫ ( 1 − u 2 ) m / 2 ⋅ u n − 1 d u \int \sin^m(x) \cos^n(x) \, dx = -\int (1 - u^2)^{m/2} \cdot u^{n-1} \, du sinm(x)cosn(x)dx=(1u2)m/2un1du

    • 例子

      计算 ∫ sin ⁡ 2 ( x ) cos ⁡ 3 ( x ) d x \int \sin^2(x) \cos^3(x) \, dx sin2(x)cos3(x)dx

      cos ⁡ ( x ) = u \cos(x) = u cos(x)=u,则 sin ⁡ 2 ( x ) = 1 − u 2 \sin^2(x) = 1 - u^2 sin2(x)=1u2,所以:
      ∫ sin ⁡ 2 ( x ) cos ⁡ 3 ( x ) d x = − ∫ ( 1 − u 2 ) ⋅ u 2 d u = − ∫ ( u 2 − u 4 ) d u \int \sin^2(x) \cos^3(x) \, dx = -\int (1 - u^2) \cdot u^2 \, du = -\int (u^2 - u^4) \, du sin2(x)cos3(x)dx=(1u2)u2du=(u2u4)du

      计算得到:
      − ( u 3 3 − u 5 5 ) + C = − ( cos ⁡ 3 ( x ) 3 − cos ⁡ 5 ( x ) 5 ) + C -\left(\frac{u^3}{3} - \frac{u^5}{5}\right) + C = -\left(\frac{\cos^3(x)}{3} - \frac{\cos^5(x)}{5}\right) + C (3u35u5)+C=(3cos3(x)5cos5(x))+C

1.1.2 当 m m m 为奇数时
  1. 分离奇数次幂

    如果 sin ⁡ m ( x ) \sin^m(x) sinm(x) 是奇数次幂,可以将其分解为 sin ⁡ m − 1 ( x ) ⋅ sin ⁡ ( x ) \sin^{m-1}(x) \cdot \sin(x) sinm1(x)sin(x)
    ∫ sin ⁡ m ( x ) cos ⁡ n ( x ) d x = ∫ sin ⁡ m − 1 ( x ) ⋅ sin ⁡ ( x ) ⋅ cos ⁡ n ( x ) d x \int \sin^m(x) \cos^n(x) \, dx = \int \sin^{m-1}(x) \cdot \sin(x) \cdot \cos^n(x) \, dx sinm(x)cosn(x)dx=sinm1(x)sin(x)cosn(x)dx

  2. 代换法

    • 代换 sin ⁡ ( x ) = u \sin(x) = u sin(x)=u

      u = sin ⁡ ( x ) u = \sin(x) u=sin(x),则 cos ⁡ ( x ) d x = d u \cos(x) \, dx = du cos(x)dx=du
      ∫ sin ⁡ m ( x ) cos ⁡ n ( x ) d x = ∫ u m ⋅ cos ⁡ n ( x ) d u \int \sin^m(x) \cos^n(x) \, dx = \int u^m \cdot \cos^n(x) \, du sinm(x)cosn(x)dx=umcosn(x)du

      使用 cos ⁡ 2 ( x ) = 1 − sin ⁡ 2 ( x ) \cos^2(x) = 1 - \sin^2(x) cos2(x)=1sin2(x),即 cos ⁡ 2 ( x ) = 1 − u 2 \cos^2(x) = 1 - u^2 cos2(x)=1u2,所以:
      cos ⁡ n ( x ) = ( 1 − u 2 ) n / 2 \cos^n(x) = (1 - u^2)^{n/2} cosn(x)=(1u2)n/2

      代入得到:
      ∫ u m ⋅ ( 1 − u 2 ) n / 2 d u \int u^m \cdot (1 - u^2)^{n/2} \, du um(1u2)n/2du

    • 例子

      计算 ∫ sin ⁡ 3 ( x ) cos ⁡ 2 ( x ) d x \int \sin^3(x) \cos^2(x) \, dx sin3(x)cos2(x)dx

      sin ⁡ ( x ) = u \sin(x) = u sin(x)=u,则 cos ⁡ 2 ( x ) = 1 − u 2 \cos^2(x) = 1 - u^2 cos2(x)=1u2,所以:
      ∫ sin ⁡ 3 ( x ) cos ⁡ 2 ( x ) d x = ∫ u 3 ⋅ ( 1 − u 2 ) d u \int \sin^3(x) \cos^2(x) \, dx = \int u^3 \cdot (1 - u^2) \, du sin3(x)cos2(x)dx=u3(1u2)du

      展开并计算:
      ∫ ( u 3 − u 5 ) d u = u 4 4 − u 6 6 + C = sin ⁡ 4 ( x ) 4 − sin ⁡ 6 ( x ) 6 + C \int (u^3 - u^5) \, du = \frac{u^4}{4} - \frac{u^6}{6} + C = \frac{\sin^4(x)}{4} - \frac{\sin^6(x)}{6} + C (u3u5)du=4u46u6+C=4sin4(x)6sin6(x)+C

总结

  • n n n 为奇数时,处理方法是将 cos ⁡ n ( x ) \cos^n(x) cosn(x) 分解为 cos ⁡ n − 1 ( x ) ⋅ cos ⁡ ( x ) \cos^{n-1}(x) \cdot \cos(x) cosn1(x)cos(x),并通过代换 cos ⁡ ( x ) = u \cos(x) = u cos(x)=u 将积分转化为 ∫ ( 1 − u 2 ) m / 2 ⋅ u n − 1 d u \int (1 - u^2)^{m/2} \cdot u^{n-1} \, du (1u2)m/2un1du
  • m m m 为奇数时,处理方法是将 sin ⁡ m ( x ) \sin^m(x) sinm(x) 分解为 sin ⁡ m − 1 ( x ) ⋅ sin ⁡ ( x ) \sin^{m-1}(x) \cdot \sin(x) sinm1(x)sin(x),并通过代换 sin ⁡ ( x ) = u \sin(x) = u sin(x)=u 将积分转化为 ∫ u m ⋅ ( 1 − u 2 ) n / 2 d u \int u^m \cdot (1 - u^2)^{n/2} \, du um(1u2)n/2du

通过以上方法,可以有效处理涉及三角函数幂的积分问题。

这篇关于数学基础 -- 微积分之三角函数幂的积分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117485

相关文章

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键