[Algorithm][综合训练][合唱团][跳台阶扩展问题][矩阵最长递增路径]详细讲解

本文主要是介绍[Algorithm][综合训练][合唱团][跳台阶扩展问题][矩阵最长递增路径]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.合唱团
    • 1.题目链接
    • 2.算法原理详解 && 代码实现
  • 2.跳台阶扩展问题
    • 1.题目链接
    • 2.算法原理详解 && 代码实现
  • 3.矩阵最长递增路径
    • 1.题目链接
    • 2.算法原理详解 && 代码实现


1.合唱团

1.题目链接

  • 合唱团

2.算法原理详解 && 代码实现

  • 解法:动态规划

    • 状态表示

      • f[i][j]:从[i, j]中挑选,挑j个人,最后一个人必选,此时的最大乘积
      • g[i][j]:从[i, j]中挑选,挑j个人,最后一个人必选,此时的最小乘积
    • 状态转移方程
      请添加图片描述

    • 返回值max(f[n][k] ~ f[k][k])

    • 初始化:绿色圆圈部分全部初始化为正负无穷,保证不会参与比较
      请添加图片描述

    #include <iostream>
    #include <vector>
    using namespace std;int main()
    {const long long INF = 0x3f3f3f3f3f3f3f3f;int n = 0, k = 0, d = 0;cin >> n;vector<int> nums(n + 1, 0);for(int i = 1; i <= n; i++){cin >> nums[i];}cin >> k >> d;vector<vector<long long>> f(n + 1, vector<long long>(k + 1, 0));vector<vector<long long>> g(n + 1, vector<long long>(k + 1, 0));     // 初始化在填表中进行for(int i = 1; i <= n; i++){g[i][1] = f[i][1] = nums[i]; // 初始化for(int j = 2; j <= min(i, k); j++) // 挑选几个人{f[i][j] = -INF; // 初始化g[i][j] = INF;  // 初始化// 前⾯挑选的最后⼀个位置for(int prev = max(i - d, j - 1); prev <= i - 1; prev++){f[i][j] = max(max(f[prev][j - 1] * nums[i], g[prev][j - 1] * nums[i]), f[i][j]);g[i][j] = min(min(f[prev][j - 1] * nums[i], g[prev][j - 1] * nums[i]), g[i][j]);}}}long long ret = -INF;for(int i = k; i <= n; i++){ret = max(ret, f[i][k]);}cout << ret << endl;return 0;
    }
    

2.跳台阶扩展问题

1.题目链接

  • 跳台阶扩展问题

2.算法原理详解 && 代码实现

  • 解法一:动态规划
  • 解法二:规律
    #include <iostream>
    using namespace std;int main()
    {int n = 0;cin >> n;cout << (1 << (n - 1)) << endl;return 0;
    }
    

3.矩阵最长递增路径

1.题目链接

  • 矩阵最长递增路径

2.算法原理详解 && 代码实现

  • 解法记忆化搜索 --> 整理下来是为了再熟悉一下记忆化搜索,无它
    class Solution 
    {int n = 0, m = 0;int dx[4] = {1, -1, 0, 0};int dy[4] = {0, 0, 1, -1};vector<vector<int>> mem;
    public:int solve(vector<vector<int>>& matrix) {n = matrix.size(), m = matrix[0].size();mem.resize(n, vector<int>(m, -1));int ret = 1;for(int i = 0; i < n; i++){for(int j = 0; j < m; j++){ret = max(ret, DFS(i, j, matrix));}}return ret;}int DFS(int i, int j, const vector<vector<int>>& matrix){if(mem[i][j] != -1){return mem[i][j];}int len = 1;for(int k = 0; k < 4; k++){int x = i + dx[k], y = j + dy[k];if(x >= 0 && x < n && y >= 0 && y < m && matrix[x][y] > matrix[i][j]){len = max(len, 1 + DFS(x, y, matrix));}}mem[i][j] = len;return len;}
    };
    

这篇关于[Algorithm][综合训练][合唱团][跳台阶扩展问题][矩阵最长递增路径]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117212

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制