python json jsonl 的用法

2024-08-29 04:52
文章标签 python json 用法 jsonl

本文主要是介绍python json jsonl 的用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JSON

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,广泛用于在客户端和服务器之间传输数据。以下是 Python 中使用 JSON 的一些常见用法:

1. 将 Python 对象转换为 JSON 字符串

使用 json.dumps() 函数将 Python 对象(如字典、列表等)转换为 JSON 字符串。

import json# Python 字典
data = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 转换为 JSON 字符串
json_str = json.dumps(data)
print(json_str)

输出示例:

{"name": "Alice", "age": 30, "city": "New York", "skills": ["Python", "Machine Learning"]}

2. 将 JSON 字符串解析为 Python 对象

使用 json.loads() 函数将 JSON 字符串解析为 Python 对象(如字典、列表等)。

json_str = '{"name": "Alice", "age": 30, "city": "New York", "skills": ["Python", "Machine Learning"]}'# 将 JSON 字符串解析为 Python 字典
data = json.loads(json_str)
print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York', 'skills': ['Python', 'Machine Learning']}

3. 将 Python 对象写入 JSON 文件

使用 json.dump() 函数将 Python 对象写入到 JSON 文件中。

import jsondata = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 将 Python 对象写入 JSON 文件
with open('data.json', 'w') as json_file:json.dump(data, json_file)

4. 从 JSON 文件读取数据

使用 json.load() 函数从 JSON 文件中读取数据并解析为 Python 对象。

import json# 从 JSON 文件读取数据
with open('data.json', 'r') as json_file:data = json.load(json_file)print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York', 'skills': ['Python', 'Machine Learning']}

5. 自定义 JSON 编码

如果你有自定义的类对象并想要将其转换为 JSON,可以通过实现自定义的编码器:

import jsonclass Employee:def __init__(self, name, age, position):self.name = nameself.age = ageself.position = position# 自定义的 JSON 编码器
def encode_employee(obj):if isinstance(obj, Employee):return {'name': obj.name, 'age': obj.age, 'position': obj.position}raise TypeError(f"Object of type {obj.__class__.__name__} is not JSON serializable")# 创建 Employee 对象
employee = Employee("John", 28, "Software Engineer")# 使用自定义编码器将对象转换为 JSON 字符串
json_str = json.dumps(employee, default=encode_employee)
print(json_str)

输出示例:

{"name": "John", "age": 28, "position": "Software Engineer"}

6. 格式化 JSON 输出

使用 json.dumps() 时,可以通过 indent 参数生成格式化的 JSON 字符串,便于阅读。

import jsondata = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 生成格式化的 JSON 字符串
json_str = json.dumps(data, indent=4)
print(json_str)

输出示例:

{"name": "Alice","age": 30,"city": "New York","skills": ["Python","Machine Learning"]
}

7. 处理复杂对象

如果需要序列化更复杂的对象,可以通过自定义 JSONEncoder 类来处理。

import jsonclass Employee:def __init__(self, name, age, position):self.name = nameself.age = ageself.position = positionclass EmployeeEncoder(json.JSONEncoder):def default(self, obj):if isinstance(obj, Employee):return {'name': obj.name, 'age': obj.age, 'position': obj.position}return super().default(obj)employee = Employee("John", 28, "Software Engineer")# 使用自定义的编码器将对象转换为 JSON 字符串
json_str = json.dumps(employee, cls=EmployeeEncoder)
print(json_str)

输出示例:

{"name": "John", "age": 28, "position": "Software Engineer"}

JSONL

JSONL(JSON Lines)是一种简单的文件格式,专门用于存储多个JSON对象,每个对象占用一行。JSONL文件的扩展名通常为 .jsonl.ndjson(Newline Delimited JSON)。这种格式在处理大量结构化数据时非常有效,因为它允许逐行读取和处理数据。

下面是JSONL的常见用法示例,包括如何在Python中读取和写入JSONL格式的数据。

1. JSONL 文件的结构

一个JSONL文件可能看起来如下:

{"name": "Alice", "age": 30, "city": "New York"}
{"name": "Bob", "age": 25, "city": "Los Angeles"}
{"name": "Charlie", "age": 35, "city": "Chicago"}

每一行都是一个有效的JSON对象,行与行之间用换行符 \n 分隔。

2. 读取 JSONL 文件

使用Python读取JSONL文件时,可以逐行处理文件中的JSON对象:

import json# 读取 JSONL 文件
with open('data.jsonl', 'r') as jsonl_file:for line in jsonl_file:# 解析每一行的 JSON 对象data = json.loads(line)print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York'}
{'name': 'Bob', 'age': 25, 'city': 'Los Angeles'}
{'name': 'Charlie', 'age': 35, 'city': 'Chicago'}

3. 写入 JSONL 文件

写入JSONL文件时,可以逐行将多个JSON对象写入文件,每个对象占用一行:

import json# 准备要写入的多个 JSON 对象
data_list = [{"name": "Alice", "age": 30, "city": "New York"},{"name": "Bob", "age": 25, "city": "Los Angeles"},{"name": "Charlie", "age": 35, "city": "Chicago"}
]# 写入 JSONL 文件
with open('data.jsonl', 'w') as jsonl_file:for data in data_list:jsonl_file.write(json.dumps(data) + '\n')

4. 追加写入 JSONL 文件

如果需要追加数据到已有的JSONL文件中,可以使用追加模式 'a'

import json# 要追加写入的 JSON 对象
new_data = {"name": "Diana", "age": 28, "city": "Houston"}# 追加写入 JSONL 文件
with open('data.jsonl', 'a') as jsonl_file:jsonl_file.write(json.dumps(new_data) + '\n')

5. 处理大数据集

由于JSONL格式允许逐行读取和处理数据,特别适合用于处理大数据集。比如当数据量较大时,可以用下面的方式逐行读取并处理,而不需要将整个文件一次性加载到内存中:

import json# 逐行处理大数据集
with open('large_data.jsonl', 'r') as jsonl_file:for line in jsonl_file:data = json.loads(line)# 对每一行的数据进行处理process_data(data)

6. 与Pandas集成

如果你需要将JSONL文件的数据加载到Pandas DataFrame中,Pandas的 read_json 方法也支持读取JSONL格式的数据:

import pandas as pd# 使用 Pandas 读取 JSONL 文件
df = pd.read_json('data.jsonl', lines=True)
print(df)

输出示例:

      name  age         city
0    Alice   30    New York
1      Bob   25  Los Angeles
2  Charlie   35     Chicago

总结

JSONL格式是一种非常实用的数据存储格式,特别适合处理大型、结构化的数据集。使用它的主要优点包括:

  • 逐行读取:有效处理大文件,节省内存。
  • 简便性:每一行都是独立的JSON对象,便于解析和处理。
  • 灵活性:可以很容易地将数据追加到已有文件中。

通过上述方法,您可以轻松地在Python中读取、写入和处理JSONL格式的数据。

这篇关于python json jsonl 的用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116899

相关文章

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

Java中 instanceof 的用法详细介绍

《Java中instanceof的用法详细介绍》在Java中,instanceof是一个二元运算符(类型比较操作符),用于检查一个对象是否是某个特定类、接口的实例,或者是否是其子类的实例,这篇文章... 目录引言基本语法基本作用1. 检查对象是否是指定类的实例2. 检查对象是否是子类的实例3. 检查对象是否

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

Python将字库文件打包成可执行文件的常见方法

《Python将字库文件打包成可执行文件的常见方法》在Python打包时,如果你想将字库文件一起打包成一个可执行文件,有几种常见的方法,具体取决于你使用的打包工具,下面就跟随小编一起了解下具体的实现方... 目录使用 PyInstaller基本方法 - 使用 --add-data 参数使用 spec 文件(

Python MCPInspector调试思路详解

《PythonMCPInspector调试思路详解》:本文主要介绍PythonMCPInspector调试思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录python-MCPInspector调试1-核心知识点2-思路整理1-核心思路2-核心代码3-参考网址

将图片导入Python的turtle库的详细过程

《将图片导入Python的turtle库的详细过程》在Python编程的世界里,turtle库以其简单易用、图形化交互的特点,深受初学者喜爱,随着项目的复杂度增加,仅仅依靠线条和颜色来绘制图形可能已经... 目录开篇引言正文剖析1. 理解基础:Turtle库的工作原理2. 图片格式与支持3. 实现步骤详解第

Python的pip在命令行无法使用问题的解决方法

《Python的pip在命令行无法使用问题的解决方法》PIP是通用的Python包管理工具,提供了对Python包的查找、下载、安装、卸载、更新等功能,安装诸如Pygame、Pymysql等Pyt... 目录前言一. pip是什么?二. 为什么无法使用?1. 当我们在命令行输入指令并回车时,一般主要是出现以