基于 Redis 的 HyperLogLog 实现了 UV 的统计

2024-08-29 01:04

本文主要是介绍基于 Redis 的 HyperLogLog 实现了 UV 的统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 前言
    • HyperLogLog 简介
    • HyperLogLog 的工作原理
    • 例子
    • 总结

前言

在现代网站开发中,用户行为分析是一个非常重要的环节。其中,UV(Unique Visitor,独立访客)PV(Page View,页面浏览量)是衡量网站流量用户活跃度的关键指标。UV 指的是通过互联网访问网站的自然人数量,通常一个用户在一定时间内的多次访问只计作一次;而 PV 则指的是用户访问网站的页面次数,无论是否来自同一用户,每次访问都会计入。

HyperLogLog 简介

HyperLogLog 是一种用于基数估计的概率性数据结构,可以高效地估算集合中唯一元素的数量(基数)。与传统的基数统计方法(如使用哈希集合)相比,HyperLogLog 能在使用极少内存的情况下提供相对高精度的基数估计。它特别适合在大数据和高并发的场景中使用,如网站的 UV(独立访客数)统计。

HyperLogLog 是一种高效的算法,用来估计集合中有多少个不同的元素

局限:

  • 误差:存在约 0.81% 的误差率,对于需要精确统计的场景不适用。
  • 不可取出原始数据:一旦元素被插入 HyperLogLog,就无法检索具体的元素,只能提供基数的估计。

HyperLogLog 的工作原理

哈希映射:HyperLogLog 使用哈希函数将每个输入元素转换成一个长整数(就像把名字转换成一个很长的号码),形成一串伪随机的二进制字符串。这样做的目的是为了确保所有元素被随机分布,而不是集中在某些地方。哈希函数的均匀性保证了每个元素有相同的概率被分配到任何一个位置。

前导零计数:对于每个哈希后的号码,HyperLogLog 会查看它的二进制表示(用 0 和 1 组成的串),并数出从左边开始有多少个连续的 0。前导零越多,说明这个元素在一个大范围内是很独特的。简单来说,前导零的数量间接反映了集合中有多少不同的元素。

分桶和调和平均:为了更准确地估计不同元素的数量,HyperLogLog 把这些哈希值分配到多个桶(想象成多个小盒子)。每个桶会记录它见到的哈希值中最多前导零的数量。然后,HyperLogLog 会用一种叫做“调和平均”的数学方法来综合所有桶的信息,从而估算出不同元素的总数。

误差控制:虽然 HyperLogLog 使用的是一种概率算法(不是完全精确),但它的误差率非常小,大约只有 0.81%。在大多数实际应用中,比如统计网站的独立访客数量(UV),这个误差是可以接受的。同时,相比于传统方法,HyperLogLog 只需要很少的内存,就可以处理非常多的数据。

例子

注解

@TrackPageView 注解可以加在控制器(Controller)的方法上,用于指定需要统计 PV 和 UV 的页面或模块。通过在 Controller 方法上使用这个注解,AOP 切面可以拦截请求,自动进行页面访问的统计。

@Target({ ElementType.PARAMETER, ElementType.METHOD })
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface TrackPageView {String pageName() default ""; // 用于指定页面或模块的名称
}

切面类

@Component
@Aspect
public class SysAspect {@Autowiredprivate StatisticsService statisticsService;@Pointcut("@annotation(com.example.hac.annotation.TrackPageView)")private void pointcut() {}@Around("pointcut()")public Object around(ProceedingJoinPoint joinPoint) throws Throwable {// 继续执行原始方法Object result = joinPoint.proceed();// 获取切入点方法的签名MethodSignature signature = (MethodSignature) joinPoint.getSignature();Method method = signature.getMethod();// 从方法中获取 TrackPageView 注解TrackPageView trackPageView = method.getAnnotation(TrackPageView.class);if (trackPageView != null) {String userId = UserContext.getUser();String pageName = trackPageView.pageName(); // 获取注解中的页面名称// 记录 PV 和 UVstatisticsService.recordPageView(userId, pageName);}return result;}
}

redis统计

@Ser**加粗样式**vice
public class StatisticsService {@Autowiredprivate StringRedisTemplate redisTemplate;private static final String UV_KEY_PREFIX = "uv:";private static final String PV_KEY_PREFIX = "pv:";public void recordPageView(String userId, String pageName) {String pvKey = PV_KEY_PREFIX + pageName;String uvKey = UV_KEY_PREFIX + pageName;// 记录 PVredisTemplate.opsForValue().increment(pvKey, 1);// 记录 UV(使用 HyperLogLog 统计唯一用户)redisTemplate.opsForHyperLogLog().add(uvKey, userId);}public long getPageViews(String pageName) {String pvKey = PV_KEY_PREFIX + pageName;String pvCount = redisTemplate.opsForValue().get(pvKey);return pvCount != null ? Long.parseLong(pvCount) : 0;}public long getUniqueVisitors(String pageName) {String uvKey = UV_KEY_PREFIX + pageName;return redisTemplate.opsForHyperLogLog().size(uvKey);}
}

ps: 可以通过修改 Redis 的 key 来按时间单位(例如每天)统计数据。每天的数据可以定时同步到数据库中,以便持久化和后续分析。当需要查看历史统计数据时,可以直接从数据库中查询。

使用:

@RestController
@RequestMapping(value = "/api")
public class TestController {@Autowiredpublic TestService service;@TrackPageView(pageName = "home")@GetMapping(value = "/test")public int test() {return service.test();}
}

结果:
在这里插入图片描述

我登录访问了两次,所以pv为2,同一个用户,所以uv为1
在这里插入图片描述

总结

为了有效地统计网站的访问情况,我们可以使用 Redis 提供的 HyperLogLog 数据结构来统计 UV(独立访客数),并使用 Redis 的 String 类型来统计 PV(页面访问次数)。


这篇关于基于 Redis 的 HyperLogLog 实现了 UV 的统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116402

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方