动手学深度学习(pytorch)学习记录19-参数管理[学习记录]

2024-08-29 00:52

本文主要是介绍动手学深度学习(pytorch)学习记录19-参数管理[学习记录],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 参数访问
    • 目标参数
    • 一次性访问所有参数
    • 从嵌套块收集参数
  • 参数初始化
    • 内置初始化
    • 自定义初始化
  • 参数绑定
  • 延后初始化

本节内容:
访问参数,用于调试、诊断和可视化;
参数初始化;
在不同模型组件间共享参数;
延后初始化。

# 单隐藏层的多层感知机
import torch
from torch import nnnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

在这里插入图片描述

参数访问

通过Sequential类定义的模型可以通过索引来访问模型的任意层。 模型就像一个列表一样,每层的参数都在其属性中。 如下所示,检查第二个全连接层的参数。

print(net[2].state_dict())
OrderedDict([('weight', tensor([[ 0.0143, -0.1299, -0.0290,  0.2700,  0.2086, -0.3533,  0.0657,  0.2856]])), ('bias', tensor([-0.1287]))])

通过输出可知:全连接层包含两个参数,分别是该层的权重和偏置。
每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。

目标参数

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([-0.1287], requires_grad=True)
tensor([-0.1287])

参数是复合的对象,包含值、梯度和额外信息。
在上面这个网络中,由于我没有调用反向传播,所以参数的梯度处于初始状态。

net[2].weight.grad == None
True

一次性访问所有参数

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,演示来访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()]) # *应该是用于解包操作,对比有无*,发现删去*后,输出或多一个[]
print(*[(name, param.shape) for name, param in net.named_parameters()])
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

另一种访问网络参数的方法

net.state_dict()['2.bias'].data
tensor([-0.1287])

从嵌套块收集参数

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())
# 用 add_module 方法将 block1 函数返回的 nn.Sequential 对象添加到 net 容器中。每次迭代都会添加一个新的模块,并且每个模块都有一个唯一的名称(例如 'block 0', 'block 1', ...)return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
tensor([[0.1559],[0.1559]], grad_fn=<AddmmBackward0>)

查看一下网络结构

print(rgnet)
Sequential((0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))(1): Linear(in_features=4, out_features=1, bias=True)
)

因为层是分层嵌套的,所以也可以像通过嵌套列表索引一样访问它们。 下面,访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data
tensor([-0.4003,  0.3388,  0.2142,  0.3416, -0.0377,  0.3460, -0.1539,  0.0325])

参数初始化

PyTorch的nn.init模块提供了多种预置初始化方法。

内置初始化

首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([0.0106, 0.0016, 0.0035, 0.0076]), tensor(0.))

还可以将所有参数初始化为给定的常数,比如初始化为6

def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 6)nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([6., 6., 6., 6.]), tensor(0.))

还可以对某些块应用不同的初始化方法。
比如使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。
(泰库辣)

def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([-0.5471,  0.4637, -0.2951,  0.1913])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

自定义初始化

def my_init(m):if type(m) == nn.Linear:print("Init", *[(name, param.shape)for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5# 将所有权重的绝对值小于5的权重设置为0,而保持权重的绝对值大于或等于5的权重不变net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])tensor([[ 5.1561, -0.0000,  5.4036,  5.2387],[-7.6918,  9.9444,  0.0000, -9.6561]], grad_fn=<SliceBackward0>)

参数绑定

个层间共享参数: 可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),shared, nn.ReLU(),nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。

延后初始化

我们定义了网络架构,但没有指定输入维度。
我们添加层时没有指定前一层的输出维度。
我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。
这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(nn.LazyLinear(256), nn.ReLU(), nn.LazyLinear(10))
C:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\lazy.py:181: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment.warnings.warn('Lazy modules are a new feature under heavy development '

网络络还不知道输入层权重的维度,因为输入维度仍然未知。

net[0].weight
<UninitializedParameter>

通过网络传递数据后,框架最终初始化参数。
一旦知道输入维度20,框架就可以通过插入20的值来识别第一层权重矩阵的形状。识别出第一层的形状后,框架继续到第二层,通过计算图依次进行,直到所有形状都已知。请注意,在这种情况下,只有第一层需要延迟初始化,但框架会顺序初始化。一旦已知所有参数形状,框架最终就可以初始化参数。

X = torch.rand(2, 20)
net(X)net[0].weight.shape
torch.Size([256, 20])

以下方法通过网络传递伪输入进行试运行,以推断所有参数形状并随后初始化参数。稍后当不需要默认随机初始化时将使用它。

@d2l.add_to_class(d2l.Module)  #@save
def apply_init(self, inputs, init=None):self.forward(*inputs)if init is not None:self.net.apply(init)
AttributeError: module 'd2l.torch' has no attribute 'add_to_class'

封面图片来源

欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/
恳请大佬批评指正。

这篇关于动手学深度学习(pytorch)学习记录19-参数管理[学习记录]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116376

相关文章

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

HTML5中的Microdata与历史记录管理详解

《HTML5中的Microdata与历史记录管理详解》Microdata作为HTML5新增的一个特性,它允许开发者在HTML文档中添加更多的语义信息,以便于搜索引擎和浏览器更好地理解页面内容,本文将探... 目录html5中的Mijscrodata与历史记录管理背景简介html5中的Microdata使用M