Python酷库之旅-第三方库Pandas(106)

2024-08-29 00:36

本文主要是介绍Python酷库之旅-第三方库Pandas(106),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、用法精讲

461、pandas.DataFrame.lt方法

461-1、语法

461-2、参数

461-3、功能

461-4、返回值

461-5、说明

461-6、用法

461-6-1、数据准备

461-6-2、代码示例

461-6-3、结果输出

462、pandas.DataFrame.gt方法

462-1、语法

462-2、参数

462-3、功能

462-4、返回值

462-5、说明

462-6、用法

462-6-1、数据准备

462-6-2、代码示例

462-6-3、结果输出

463、pandas.DataFrame.le方法

463-1、语法

463-2、参数

463-3、功能

463-4、返回值

463-5、说明

463-6、用法

463-6-1、数据准备

463-6-2、代码示例

463-6-3、结果输出

464、pandas.DataFrame.ge方法

464-1、语法

464-2、参数

464-3、功能

464-4、返回值

464-5、说明

464-6、用法

464-6-1、数据准备

464-6-2、代码示例

464-6-3、结果输出

465、pandas.DataFrame.ne方法

465-1、语法

465-2、参数

465-3、功能

465-4、返回值

465-5、说明

465-6、用法

465-6-1、数据准备

465-6-2、代码示例

465-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

461、pandas.DataFrame.lt方法
461-1、语法
# 461、pandas.DataFrame.lt方法
pandas.DataFrame.lt(other, axis='columns', level=None)
Get Less than of dataframe and other, element-wise (binary operator lt).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
461-2、参数

461-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

461-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

461-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

461-3、功能

        用于逐元素地比较DataFrame和另一个对象(如标量、Series、DataFrame等)是否小于(less than)other,并返回一个布尔类型的DataFrame,其中的元素表示比较的结果。

461-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否小于other中的元素。即,如果df[i,j] < other[i,j],则结果DataFrame 中的元素为True,否则为False。

461-5、说明

        无

461-6、用法
461-6-1、数据准备
461-6-2、代码示例
# 461、pandas.DataFrame.lt方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否小于标量4
result = df.lt(4)
print(result)
461-6-3、结果输出
# 461、pandas.DataFrame.lt方法
#       A      B
# 0  True  False
# 1  True  False
# 2  True  False
462、pandas.DataFrame.gt方法
462-1、语法
# 462、pandas.DataFrame.gt方法
pandas.DataFrame.gt(other, axis='columns', level=None)
Get Greater than of dataframe and other, element-wise (binary operator gt).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
462-2、参数

462-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

462-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

462-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

462-3、功能

        用于对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否大于该对象。

462-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否大于other中的对应元素。即,如果df[i,j] > other[i,j],则结果DataFrame的该元素为True,否则为False。

462-5、说明

        无

462-6、用法
462-6-1、数据准备
462-6-2、代码示例
# 462、pandas.DataFrame.gt方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否大于标量4
result = df.gt(4)
print(result)
462-6-3、结果输出
# 462、pandas.DataFrame.gt方法
#        A      B
# 0  False  False
# 1  False   True
# 2  False   True
463、pandas.DataFrame.le方法
463-1、语法
# 463、pandas.DataFrame.le方法
pandas.DataFrame.le(other, axis='columns', level=None)
Get Less than or equal to of dataframe and other, element-wise (binary operator le).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
463-2、参数

463-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

463-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

463-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

463-3、功能

        用于对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否小于等于该对象。

463-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否小于等于other中的对应元素。即,如果df[i,j] <= other[i,j],则结果DataFrame的该元素为True,否则为False。

463-5、说明

        无

463-6、用法
463-6-1、数据准备
463-6-2、代码示例
# 463、pandas.DataFrame.le方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否小于等于标量4
result = df.le(4)
print(result)
463-6-3、结果输出
# 463、pandas.DataFrame.le方法
#       A      B
# 0  True   True
# 1  True  False
# 2  True  False
464、pandas.DataFrame.ge方法
464-1、语法
# 464、pandas.DataFrame.ge方法
pandas.DataFrame.ge(other, axis='columns', level=None)
Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
464-2、参数

464-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

464-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

464-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

464-3、功能

        对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否大于等于该对象。

464-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否大于等于other中的对应元素。即,如果df[i,j] >= other[i,j],则结果 DataFrame 的该元素为True,否则为False。

464-5、说明

        无

464-6、用法
464-6-1、数据准备
464-6-2、代码示例
# 464、pandas.DataFrame.ge方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否大于等于标量4
result = df.ge(4)
print(result)
464-6-3、结果输出
# 464、pandas.DataFrame.ge方法
#        A     B
# 0  False  True
# 1  False  True
# 2  False  True
465、pandas.DataFrame.ne方法
465-1、语法
# 465、pandas.DataFrame.ne方法
pandas.DataFrame.ne(other, axis='columns', level=None)
Get Not equal to of dataframe and other, element-wise (binary operator ne).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
465-2、参数

465-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

465-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

465-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

465-3、功能

        对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否不等于该对象,该方法可以用来快速检查两个数据集之间的差异或验证数据一致性。

465-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否不等于other中的对应元素。即,如果df[i,j] != other[i,j],则结果DataFrame的该元素为True,否则为False。

465-5、说明

        无

465-6、用法
465-6-1、数据准备
465-6-2、代码示例
# 465、pandas.DataFrame.ne方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame中的元素是否不等于标量4
result = df.ne(4)
print(result)
465-6-3、结果输出
# 465、pandas.DataFrame.ne方法
#       A      B
# 0  True  False
# 1  True   True
# 2  True   True

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

这篇关于Python酷库之旅-第三方库Pandas(106)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116333

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar