Python(C)图像压缩导图

2024-08-28 20:04
文章标签 python 导图 图像压缩

本文主要是介绍Python(C)图像压缩导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 傅里叶和小波变换
  2. 主成分分析彩色图
  3. 压缩制作不同尺寸图像
  4. K均值和生成式对抗网络压缩
  5. 无损压缩算法
  6. 压缩和解压缩算法
  7. 离散小波变换压缩
  8. 树结构象限算法压缩
  9. 矩阵分解有损压缩算法
  10. 量化模型有损压缩算法
  11. JPEG压缩解压缩算法
    在这里插入图片描述

Python图像压缩

图像压缩可以是有损的,也可以是无损的。无损压缩是档案用途的首选,通常用于医学成像、技术图纸、剪贴画或漫画。有损压缩方法,尤其是在低比特率下使用时,会产生压缩伪影。有损方法特别适用于自然图像,例如照片,在这种应用中,可以接受轻微(有时难以察觉)的保真度损失,以实现比特率的大幅降低。产生可忽略不计的差异的有损压缩可以称为视觉无损。

在给定压缩率(或比特率)下获得最佳图像质量是图像压缩的主要目标,但是,图像压缩方案还有其他重要属性:

可伸缩性通常是指通过操纵比特流或文件(无需解压和重新压缩)实现的质量降低。可伸缩性的其他名称是渐进式编码或嵌入式比特流。尽管其性质相反,但可伸缩性也可以在无损编解码器中找到,通常以从粗到细的像素扫描形式出现。可伸缩性对于在下载图像时预览图像(例如,在 Web 浏览器中)或提供对数据库等的可变质量访问特别有用。可伸缩性有几种类型:

  • 质量渐进或层渐进:比特流连续细化重建图像。
  • 分辨率渐进:首先编码较低的图像分辨率;然后将差异编码为更高分辨率。
  • 分量渐进:首先编码灰度版本;然后添加全色。

感兴趣区域编码:图像的某些部分的编码质量高于其他部分。这可以与可扩展性相结合(首先对这些部分进行编码,然后再对其他部分进行编码)。元信息:压缩数据可能包含有关图像的信息,可用于对图像进行分类、搜索或浏览。此类信息可能包括颜色和纹理统计信息、小预览图像以及作者或版权信息。

处理能力:压缩算法需要不同数量的处理能力来编码和解码。一些高压缩算法需要高处理能力。

压缩方法的质量通常用峰值信噪比来衡量。它衡量的是图像有损压缩引入的噪声量,然而,观看者的主观判断也被视为一项重要衡量标准,或许是最重要的衡量标准。

在我们深入压缩图像之前,让我们创建一个函数,以友好的格式打印文件大小:

def get_size_format(b, factor=1024, suffix="B"):for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]:if b < factor:return f"{b:.2f}{unit}{suffix}"b /= factorreturn f"{b:.2f}Y{suffix}"

接下来,让我们来制作压缩图像的核心函数:

def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True):img = Image.open(image_name)print("[*] Image shape:", img.size)image_size = os.path.getsize(image_name)print("[*] Size before compression:", get_size_format(image_size))if new_size_ratio < 1.0:img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.ANTIALIAS)print("[+] New Image shape:", img.size)elif width and height:img = img.resize((width, height), Image.ANTIALIAS)print("[+] New Image shape:", img.size)filename, ext = os.path.splitext(image_name)if to_jpg:new_filename = f"{filename}_compressed.jpg"else:new_filename = f"{filename}_compressed{ext}"try:img.save(new_filename, quality=quality, optimize=True)except OSError:img = img.convert("RGB")img.save(new_filename, quality=quality, optimize=True)print("[+] New file saved:", new_filename)new_image_size = os.path.getsize(new_filename)print("[+] Size after compression:", get_size_format(new_image_size))saving_diff = new_image_size - image_sizeprint(f"[+] Image size change: {saving_diff/image_size*100:.2f}% of the original image size.")

现在我们已经有了核心函数,让我们使用 argparse 模块将其与命令行参数集成:

if __name__ == "__main__":import argparseparser = argparse.ArgumentParser(description="Simple Python script for compressing and resizing images")parser.add_argument("image", help="Target image to compress and/or resize")parser.add_argument("-j", "--to-jpg", action="store_true", help="Whether to convert the image to the JPEG format")parser.add_argument("-q", "--quality", type=int, help="Quality ranging from a minimum of 0 (worst) to a maximum of 95 (best). Default is 90", default=90)parser.add_argument("-r", "--resize-ratio", type=float, help="Resizing ratio from 0 to 1, setting to 0.5 will multiply width & height of the image by 0.5. Default is 1.0", default=1.0)parser.add_argument("-w", "--width", type=int, help="The new width image, make sure to set it with the `height` parameter")parser.add_argument("-hh", "--height", type=int, help="The new height for the image, make sure to set it with the `width` parameter")args = parser.parse_args()print("="*50)print("[*] Image:", args.image)print("[*] To JPEG:", args.to_jpg)print("[*] Quality:", args.quality)print("[*] Resizing ratio:", args.resize_ratio)if args.width and args.height:print("[*] Width:", args.width)print("[*] Height:", args.height)print("="*50)compress_img(args.image, args.resize_ratio, args.quality, args.width, args.height, args.to_jpg)

现在使用我们的脚本。首先,让我们使用不带任何参数的脚本:

$ python compress_image.py sample-images.png

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: False
[*] Quality: 90
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.png
[+] Size after compression: 379.25KB
[+] Image size change: -10.90% of the original image size.

图像大小从 425.65KB 减少到 379.25KB,减少了约 11%。接下来,让我们尝试传递 -j 以将 PNG 转换为 JPEG:

$ python compress_image.py sample-images.png -j

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 90
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 100.07KB
[+] Image size change: -76.49% of the original image size.

提高了 76.5%。让我们稍微降低质量:

$ python compress_image.py sample-satellite-images.png -j -q 75

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 64.95KB
[+] Image size change: -84.74% of the original image size.

在不影响原始图像分辨率的情况下减少约 85%。让我们尝试将图像的宽度和高度乘以 0.9:

$ python compress_image.py sample-satellite-images.png -j -q 75 -r 0.9

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 0.9
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New Image shape: (857, 446)
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 56.94KB
[+] Image size change: -86.62% of the original image size.

现在设置精确的宽度和高度值:

$ python compress_image.py sample-satellite-images.png -j -q 75 -w 800 -hh 400 

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 1.0
[*] Width: 800
[*] Height: 400
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New Image shape: (800, 400)
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 49.73KB
[+] Image size change: -88.32% of the original image size.

👉更新:亚图跨际

这篇关于Python(C)图像压缩导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115752

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: